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A NEW PARANORMED SERIES SPACE USING EULER

TOTIENT MEANS AND SOME MATRIX

TRANSFORMATIONS

G. Canan Hazar Güleç∗ and Merve İlkhan

Abstract. Paranormed spaces are important as a generalization of
the normed spaces in terms of having more general properties. The
aim of this study is to introduce a new paranormed space |φz| (p)
over the paranormed space ` (p) using Euler totient means, where
p = (pk) is a bounded sequence of positive real numbers. Besides
this, we investigate topological properties and compute the α−, β−,
and γ duals of this paranormed space. Finally, we characterize the
classes of infinite matrices (|φz| (p) , λ) and (λ, |φz| (p)), where λ is
any given sequence space.

1. Introduction, Definitions and Notation

The study of sequence spaces is one of the important research areas in
several branches of analysis, namely, theory of topological vector spaces,
summability theory, Schauder basis theory.

Especially, constructing new sequence spaces by means of the ma-
trix domain of an infinite matrix has been widely studied by many au-
thors. Besides this, some new series spaces by using absolute summa-
bility methods have been introduced. In this topic, recently İlkhan and
Hazar [15] have introduced the space |φz|p using matrix domain over a
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normed space and also characterized certain matrix operators on that
space. However, paranormed spaces are important as a generalization of
the normed spaces in terms of having more general properties. In this
study, we introduce a new series space over the paranormed space which
extends the results of İlkhan and Hazar in [15] to paranormed space.

Let ω be the space of real sequences. Any vector subspace of ω is
called as a sequence space. By `∞, c and c0, we denote the sequence
spaces of all bounded, convergent and null sequences, respectively. We

write `p =

{
x = (xk) ∈ w :

∑
k

|xk|p <∞
}

for 1 ≤ p < ∞. Also, by

bs and cs, we denote the spaces of all bounded and convergent series,
respectively.

A linear topological space X over the real field R is said to be a
paranormed space if there is a subadditive function g : X → R such
that g (θ) = 0, g (x) = g (−x) and scalar multiplication is continuous,
i.e.,

|αn − α| → 0 and g (xn − x)→ 0 imply g (αnxn − αx)→ 0

for all α
′
s in R and all x

′
s in X, where θ is the zero vector of X.

Throughout the text, we assume that (pk) is a bounded sequence
of strictly positive real numbers such that H = supk pk and M =
max {1, H} . The linear space ` (p) was defined by Maddox [20, 21] (see
also Nakano [25] and Simons [29]) as follows.

` (p) =

{
x = (xk) ∈ w :

∑
k

|xk|pk <∞

}
, (0 < pk ≤ H <∞)

which is a complete paranormed space by

g (x) =

(∑
k

|xk|pk
)1/M

.

Also, we shall assume throughout that p−1
k +

(
p
′

k

)−1
= 1 provided 1 <

inf pk ≤ H < ∞. We denote the collection of all finite subsets of N by
F .

For the sequence spaces X and Y define the set M (X, Y ) by

M (X, Y ) = {u = (uk) ∈ w : xu = (xkuk) ∈ Y for all x ∈ X} .
Then, the sets

Xα = M (X, `1) , Xβ = M (X, cs) and Xγ = M (X, bs)
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are called the α−, β− and γ− duals of the sequence space X, respec-
tively.

Let X and Y be subspaces of ω and A = (ank) be an infinite matrix of
real numbers ank, where k, n ∈ N. Then we say that A defines a matrix
transformation from X into Y, and we denote it by writing A ∈ (X, Y ) ,
if for every sequence x = (xk) ∈ X, the sequence Ax = (An(x)) , the
A-transform of x, is in Y, where

An (x) =
∞∑
k=1

ankxk

provided that the series is convergent for every n ∈ N. Also, we write An
for the sequence in the n-th row of A, that is, An = (ank)

∞
k=1 for every

n ∈ N.
An infinite matrix A = (anv) is called a triangle if ann 6= 0 and anv = 0

for all n, v with v > n ( [31]).
A sequence (bk) of the elements of X is called a basis for a sequence

space X paranormed by g if and only if, for every x ∈ X, there exists a
unique sequence (αn) of scalars such that

g

(
x−

n∑
k=1

αkbk

)
→ 0 as n→∞,

and in this case we write x =
∞∑
k=1

αkbk.

Let
∑
xn be infinite series, s = (sn) be the sequence of partial sums

of the series and (zn) be a sequence of non-negative terms. The series∑
xn is said to be summable |A, zn|p , p ≥ 1, if

∞∑
n=1

zp−1
n |∆An(s)|p <∞,

where ∆An(s) = An(s)− An−1(s), for n ≥ 1 ( [28]).
For an infinite matrix A and a sequence space X, the matrix domain

XA is introduced by

(1) XA = {x ∈ w : Ax ∈ X} .
Recently, several authors have introduced new sequence spaces by

using matrix domain over the sequence spaces `p and ` (p) [3–5,8,14,17,
18, 32, 33]. For example, the authors have defined the sequence spaces
X = (`p)C1

in [26], rt (p) = (` (p))Rt in [1], erp = (`p)Er and er (p) =
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(` (p))Er in [3,16,24], Z (u, v, `p) = (`p)G(u,v) and ` (u, v, p) = (` (p))G(u,v)

in [2, 23], arp = (`p)Ar and ar (u, p) = (` (p))Ar
u

in [4, 5], bvp = (`p)∆ and

bv (u, p) = (` (p))Au in [6,22] ` (p) = (` (p))S in [7], where C1, R
t, Er and

G (u, v) are the Cesàro, Riesz, Euler and generalized means, respectively,
S is the summation matrix, ∆ is the difference matrix, and Ar, Au and
Aru are defined in [4–6].

On the other hand, some new series spaces have been introduced
by using matrix domain over normed spaces in [10–12, 15, 27]. In this
context, using Euler totient matrix Φ = (φnk), series space |φz|p , as the

set of all series summable by the method |Φ, zn|p, has been introduced

and studied in [15] for 1 ≤ p < ∞. In this study, we introduce a new
series space by using matrix domain over the paranormed space ` (p) ,
which extends the results of İlkhan and Hazar in [15] to paranormed
space.

Now, we give some notations and basic concepts including Euler to-
tient matrix.

Euler totient function ϕ counts the positive integer up to a given
m ∈ N with m > 1 which are coprime with m and ϕ (1) = 1. For a
prime m, ϕ (m) = m−1, since all numbers less than m are coprime with
m.

If two numbers m and n are coprime, then ϕ (mn) = ϕ (m)ϕ (n) and
also another identity relates the divisors d of m such that m =

∑
d|m

ϕ (d)

holds.

Now, consider the infinite matrix Φ = (φnk) such that

φnk =

{
ϕ(k)
n

, if k | n
0 , if k - n.

Schoenberg [30] has proved that this matrix is regular and defined
that a sequence (xn) of real numbers is ϕ−convergent to ξ ∈ R if

lim
n→∞

1

n

∑
d|n

ϕ (d)xd = ξ.

This regular matrix is called as Euler totient matrix operator and the
new sequence space has been defined by using this matrix by İlkhan and
Kara in [13].
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For any given m ∈ N with m > 1, Möbius function µ is defined as

µ(m) =

 (−1)r if r is the number of prime factors of m

0 if m is divisible by the square of a prime number

and µ(1) = 1. The Möbius function is multiplicative, that is, if two
numbers m and n are coprime, then µ (mn) = µ (m)µ (n) and satisfies∑
d|m

µ (d) = 0 except for m = 1.

2. A New Paranormed Space |φz| (p)

In this section, we define a new space |φz| (p) and prove that this
space is complete paranormed linear space according to its paranorm.
Moreover, we show that the spaces |φz| (p) and ` (p) are linearly isomor-
phic and give the basis for the space |φz| (p) . Now, we define the space
|φz| (p) , as the set of all series summable by the method |Φ, zn| (p) ,

|φz| (p) =

{
x = (xn) ∈ w :

∞∑
n=1

zpn−1
n |∆Φn(s)|pn <∞

}
.

Also since s = (sn) is the sequence of partial sums of infinite series
∑
xn,

we obtain that

|φz| (p)=

x ∈ ω :
∞∑
n=2

zpn−1
n

∣∣∣∣∣∣∣∣
n−1∑
j=1

xj

 n∑
k=j
k|n

ϕ (k)

n
−

n−1∑
k=j
k|n−1

ϕ (k)

n− 1

+ xn
ϕ(n)

n

∣∣∣∣∣∣∣∣
pn

+ zp1−1
1 |x1|p1 <∞

}
.

If pn = p for every n ∈ N, the space |φz| (p) is reduced to the space |φz|p
for 1 ≤ p <∞.

Here, if we define the matrices E (p) = (enk (p)) and F = (fnk) by

(2) enk (p) =


−z1/p

′
n

n , k = n− 1

z
1/p

′
n

n , k = n
0 , otherwise
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and

(3) fnk =


1

n

n∑
j=k
j|n

ϕ (j) , 1 ≤ k ≤ n

0 , k > n,

then, we can write that x = (xn) ∈ |φz| (p) if and only if (E (p) ◦ F )
transform of the sequence x = (xn) is in the space ` (p) , where the
sequence y = (yn), the E (p) ◦ F -transform of the sequence x = (xk) , is
defined by

y1 = z
1/p

′
1

1 x1, yn = z1/p
′
n

n

n−1∑
j=1

xj

 n∑
k=j
k|n

ϕ (k)

n
−

n−1∑
k=j
k|n−1

ϕ (k)

n− 1

+ xn
ϕ(n)

n

 ,

n ≥ 2.

(4)

By the notation of matrix domain, we can redefine the space |φz| (p)
as

|φz| (p) = (` (p))E(p)◦F .

Now, we give some interesting results of the newly defined space
|φz| (p) concerning its topological structures.

Theorem 2.1. The space |φz| (p) is a complete paranormed space
with the paranorm given by

(5) h (x) =

(∑
n

|(E (p) ◦ F )n (x)|pn
)1/M

,

where 0 < pn ≤ H <∞ for all n ∈ N, H = supn pn and M = max{1, H}.

Proof. It is clear that h (θ) = 0 and h (x) = h (−x) for all x ∈ |φz| (p) .
For linearity of |φz| (p) with respect to coordinate wise addition and
scalar multiplication, take any x, y ∈ |φz| (p) and α ∈ R. By using
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Minkowski’s inequality, we have

(∑
n

|(E (p) ◦ F )n (x+ y)|pn
)1/M

≤

(∑
n

|(E (p) ◦ F )n (x)|pn
)1/M

(6)

+

(∑
n

|(E (p) ◦ F )n (y)|pn
)1/M

<∞

which means x+ y ∈ |φz| (p) .
Also, since |α|pn ≤ max

{
1, |α|M

}
, we get h (αx) ≤ max {1, |α|}h (x) .

Thus, αx ∈ |φz| (p) .
Subadditivity of h is seen from (6), i.e.,

(7) h (x+ y) ≤ h (x) + h (y) .

Let (xn) be any sequence in |φz| (p) with h (xn − x) → 0 as n → ∞
and also (αn) be any sequence of real scalars such that αn → α as
n→∞. Then, by using inequality (7), we have that {h (xn)} is bounded,
since

h (xn) ≤ h (x) + h (x− xn) .

So we have,

h
(
αkx

k − αx
)

=

(∑
n

∣∣(E (p) ◦ F )n
(
αkx

k − αx
)∣∣pn)1/M

=

(∑
n

∣∣(E (p) ◦ F )n
(
αkx

k − αx+ αxk − αxk
)∣∣pn)1/M

≤ |αk − α|h
(
xk
)

+ |α|h
(
xk − x

)
→ 0 as k →∞,

which implies that scalar multiplication is continuous. Hence, h is a
paranorm on the space |φz| (p) .

Now, we prove the completeness of the space |φz| (p) with respect to
the paranorm h. Suppose that (xn) is any Cauchy sequence in the space
|φz| (p) . Given any ε > 0, there exists a positive integer n0 such that

h
(
xi − xj

)
< ε



212 G. C. Hazar Güleç and M. İlkhan

for all i, j ≥ n0. By using the definition of h for each fixed n ∈ N, we
have ∣∣(E (p) ◦ F )n

(
xi
)
− (E (p) ◦ F )n

(
xj
)∣∣(8)

≤

(∑
n

∣∣(E (p) ◦ F )n
(
xi
)
− (E (p) ◦ F )n

(
xj
)∣∣pn)1/M

< ε

for all i, j ≥ n0. This implies that {(E (p) ◦ F )n (xi)} is a Cauchy se-
quence in R for every fixed n ∈ N and so we have

lim
i→∞

(E (p) ◦ F )n
(
xi
)

= (E (p) ◦ F )n (x) .

Using these infinitely many limits, we define a sequence

{(E (p) ◦ F )1 (x) , (E (p) ◦ F )2 (x) , ...} .

We have from (8) that

(9)
m∑
n=1

∣∣(E (p) ◦ F )n
(
xi
)
− (E (p) ◦ F )n

(
xj
)∣∣pn < h

(
xi − xj

)M
< εM

for each m ∈ N and i, j ≥ n0. Let j,m → ∞ in (9), then we obtain
h (xi − x) < ε for i ≥ n0. Thus, (xi) converges to x in |φz| (p) . Also,
from Minkowski’s inequality, we have(∑

n

|(E (p) ◦ F )n (x)|pn
)1/M

≤

(∑
n

∣∣(E (p) ◦ F )n
(
x− xi

)∣∣pn)1/M

+

(∑
n

∣∣(E (p) ◦ F )n
(
xi
)∣∣pn)1/M

= h
(
x− xi

)
+ h

(
xi
)
<∞

which implies that x ∈ |φz| (p) . Therefore we have shown that |φz| (p) is
complete and this concludes the proof.

Theorem 2.2. The space |φz| (p) is linearly isomorphic to the space
` (p) , i.e.,

|φz| (p) ∼= ` (p) ,

where 1 < pn ≤ H <∞ for all n ∈ N.
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Proof. To prove the theorem, we should show that there exists a bijec-
tive linear mapping from |φz| (p) to ` (p) . With (4), we define a mapping

(10) E (p) ◦ F : |φz| (p)→ ` (p)

by (E (p) ◦ F ) (x) = y. Then, the composite function E (p) ◦ F is a
linear operator, since E (p) and F are linear operators. Further, it is
obvious that x = θ whenever (E (p) ◦ F ) (x) = θ and hence (E (p) ◦ F )
is injective. For any y ∈ ` (p), consider the sequence x = (xn) by

(11) xn =
n∑
j=1

(
n∑
r=j

f̂nrz
−1/p

′
j

j

)
yj,

where F̂ =
(
f̂nk

)
is inverse of the matrix F = (fnk) defined by

(12) f̂jr =



µ
(
j
r

)
r

ϕ (j)
, r | j

−
µ
(
j−1
r

)
r

ϕ (j − 1)
, r | j − 1

µ (j)

ϕ (j)
− µ (j − 1)

ϕ (j − 1)
, r = 1

0 , otherwise.

Then,

h (x) =

(∑
n

|(E (p) ◦ F )n (x)|pn
)1/M

= h1 (y) <∞,

where h1 is the usual paranorm on `(p). Thus, we deduce that x ∈
|φz| (p) . As a result, E (p) ◦ F is surjective and is paranorm preserv-
ing. Hence, we conclude that the spaces |φz| (p) and ` (p) are linearly
isomorphic.

Since |φz| (p) ∼= ` (p) , the Schauder basis of the space |φz| (p) is the
inverse image of the basis of ` (p) . So we give the following theorem
without proof.
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Theorem 2.3. Let yk = ((E (p) ◦ F ) (x))k , for all k ∈ N and 1 <

pn ≤ H <∞. Define the sequence b(j) =
(
b

(j)
n

)
as

b(j)
n =

 z
−1/p

′
j

j

n∑
r=j

f̂nr , 1 ≤ j ≤ n

0 , j > n.

The sequence b(j) is a basis for the space |φz| (p) and any x ∈ |φz| (p)
has a unique representation of the form

x =
∞∑
j=1

yjb
(j).

3. α, β, γ-Duals of the Space |φz| (p) and Matrix Mappings

In this section, we determine the α−, β−, and γ duals of the space
|φz| (p) . In addition to that, we also characterize the classes of infinite
matrices (|φz| (p) , λ) and (λ, |φz| (p)), where λ is any given sequence
space.

Now, we give following lemmas which are required to prove duals
spaces.

Lemma 3.1. [9]
(i) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A = (ank) ∈ (` (p) , `1)

if and only if there exists an integer B > 1 such that

sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

ankB
−1

∣∣∣∣∣
p
′
k

<∞.

(ii) Let 0 < pk ≤ 1 for all k ∈ N. Then, A = (ank) ∈ (` (p) , `1) if and
only if

sup
N∈F

sup
k∈N

∣∣∣∣∣∑
n∈N

ank

∣∣∣∣∣
pk

<∞.

Lemma 3.2. [19]
(i)Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A = (ank) ∈ (` (p) , `∞)

if and only if there exists an integer B > 1 such that

(13) sup
n∈N

∑
k

∣∣ankB−1
∣∣p′k <∞.
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(ii) Let 0 < pk ≤ 1 for all k ∈ N. Then, A = (ank) ∈ (` (p) , `∞) if and
only if

(14) sup
n,k∈N

|ank|pk <∞.

Lemma 3.3. [19] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A =
(ank) ∈ (` (p) , c) if and only if (13), (14) hold, and

lim
n→∞

ank = βk, (k ∈ N)

also holds.

Let B ∈ {n ∈ N : n ≥ 2} , F̂ =
(
f̂nk

)
be given in (12), and define the

sets D1 (p) , D2 (p) , D3 (p) , D4 (p) and D5 (p) as follows:

D1 (p) =

a = (ak) ∈ w : sup
N∈F

sup
j∈N

∣∣∣∣∣∣
∑
n∈N

n∑
r=j

anf̂nrz
−1/p

′
j

j

∣∣∣∣∣∣
pj

<∞

 ,

D2 (p) = ∪B>1

a = (ak) ∈ w : sup
N∈F

∑
j

∣∣∣∣∣∣
∑
n∈N

n∑
r=j

anf̂nrz
−1/p

′
j

j B−1

∣∣∣∣∣∣
p
′
j

<∞

 ,

D3 (p) =

a = (ak) ∈ w : sup
m,j∈N

∣∣∣∣∣∣
m∑
k=j

ak

 k∑
r=j

f̂krz
−1/p

′
j

j

∣∣∣∣∣∣
pj

<∞

 ,

D4 (p) = ∪B>1

a = (ak) ∈ w : sup
m∈N

m∑
j=1

∣∣∣∣∣∣
m∑
k=j

ak

 k∑
r=j

f̂krz
−1/p

′
j

j

B−1

∣∣∣∣∣∣
p
′
j

<∞

 ,

D5 (p) =

a = (ak) ∈ w : lim
m→∞

m∑
k=j

ak

 k∑
r=j

f̂krz
−1/p

′
j

j

 exists for all j ∈ N

 .

Theorem 3.4.
(i) Let 0 < pk ≤ 1 for all k ∈ N. Then,

{|φz| (p)}α = D1 (p) .

(ii) Let 1 < pk ≤ H <∞ for all k ∈ N.Then,

{|φz| (p)}α = D2 (p) .
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Proof. We only give the proof for the case (ii). Since the proof may
be obtained by the same way for the case (i), so we omit it.

Let pk > 1, a = (an) ∈ w and x = (xk) ∈ |φz| (p) . Then, we immedi-
ately derive with (11)

(15) anxn =
n∑
j=1

(
n∑
r=j

anf̂nrz
−1/p

′
j

j

)
yj = δn (y) , (n ∈ N)

where δn = (δnj) is defined by

δnj =


n∑
r=j

anf̂nrz
−1/p

′
j

j , 1 ≤ j ≤ n,

0 , j > n

and F̂ =
(
f̂nk

)
is as in (12). Thus, we observe by (15) that ax =

(anxn) ∈ `1 whenever x = (xk) ∈ |φz| (p) if and only if δy ∈ `1whenever
y = (yk) ∈ ` (p) . This means that the sequence a = (an) is in the α−dual
of the space |φz| (p) if and only if δ ∈ (` (p) , `1) . By using Lemma 3.1
(i), we have {|φz| (p)}α = D2 (p) .

Theorem 3.5.
(i) Let 0 < pk ≤ 1 for all k ∈ N. Then,

{|φz| (p)}γ = D3 (p) .

(ii) Let 1 < pk ≤ H <∞ for all k ∈ N. Then,

{|φz| (p)}γ = D4 (p) .

Proof. As in the proof of Theorem 3.4, we prove only case (ii). Let
pk > 1, a = (an) ∈ w and x = (xk) ∈ |φz| (p) . We consider the equation

m∑
k=1

akxk =
m∑
k=1

ak

k∑
j=1

(
k∑
r=j

f̂krz
−1/p

′
j

j

)
yj(16)

=
m∑
j=1

m∑
k=j

ak

(
k∑
r=j

f̂krz
−1/p

′
j

j

)
yj = Gm(y),

where G = (gmj) is defined by

(17) gmj =


m∑
k=j

ak

(
k∑
r=j

f̂krz
−1/p

′
j

j

)
, 1 ≤ j ≤ m,

0 , j > m.
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Therefore, we deduce with (16) that ax = (akxk) ∈ bs whenever x ∈
|φz| (p) if and only if Gy ∈ `∞ whenever y ∈ ` (p) . This shows that
a = (an) ∈ {|φz| (p)}γ if and only if G ∈ (` (p) , `∞) . By Lemma 3.2 (i)
we obtain that {|φz| (p)}γ = D4 (p) .

Theorem 3.6.
(i) Let 0 < pk ≤ 1 for all k ∈ N. Then,

{|φz| (p)}β = D3 (p) ∩D5 (p) .

(ii) Let 1 < pk ≤ H <∞ for all k ∈ N. Then,

{|φz| (p)}β = D4 (p) ∩D5 (p) .

Proof. By the same way in the proof of Theorem 3.5, we can show
with (16) that ax = (akxk) ∈ cs whenever x ∈ |φz| (p) if and only if
Gy ∈ c whenever y ∈ ` (p) , where G = (gmj) is defined in (17). That is

to say that a = (an) ∈ {|φz| (p)}β if and only if G ∈ (` (p) , c) . Therefore
we deduce from Lemma 3.3 that

sup
m∈N

m∑
j=1

∣∣∣∣∣
m∑
k=j

ak

(
k∑
r=j

f̂krz
−1/p

′
j

j

)
B−1

∣∣∣∣∣
p
′
j

<∞

and

lim
m→∞

m∑
k=j

ak

(
k∑
r=j

f̂krz
−1/p

′
j

j

)
exists for all j ∈ N,

which tells us that {|φz| (p)}β = D4 (p) ∩D5 (p) .

Now, we give the characterization of the classes of infinite matrices
(|φz| (p) , λ) and (λ, |φz| (p)), where λ is any given sequence space.

Theorem 3.7. Let λ be any given sequence space. Define the infinite
matrix D = (dnj) via an infinite matrix A = (ank) by

dnj =
∞∑
k=j

ank

(
k∑
r=j

f̂krz
−1/p

′
j

j

)
.

Then, A = (ank) ∈ (|φz| (p) , λ) if and only if An ∈ {|φz| (p)}β for all
n ∈ N and D ∈ (` (p) , λ).
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Proof. In proving the theorem, we apply the technique used by Yeşilkayagil
and Başar in [32]. Suppose that λ be any given sequence space and take
into account that the spaces |φz| (p) and ` (p) are linearly isomorphic. Let
A ∈ (|φz| (p) , λ) and y ∈ ` (p) . For brevity we denote E (p) ◦F = T (p)
by

tnj (p) =
n∑
k=1

enk (p) fkj = en,n−1 (p) fn−1,j+enn (p) fnj = z1/p
′
n

n (fnj − fn−1,j) .

Then,

(DT (p))nk =
∞∑
j=k

dnjtjk (p) =
∞∑
j=k

∞∑
i=j

ani

(
i∑

r=j

f̂irz
−1/p

′
j

j

)
z

1/p
′
j

j (fjk − fj−1,k)

= ank.

Then, DT (p) exists and An ∈ {|φz| (p)}β , which gives us that Dn ∈
{` (p)}β for each n ∈ N. Thus, Dy exists for each y ∈ ` (p) and

∑
k

dnkyk =
∑
k

∞∑
j=k

anj

(
j∑

r=k

f̂jrz
−1/p

′
k

k

)
×

(
k∑
j=1

z
1/p

′
k

k (fkj − fk−1,j)xj

)

=
∑
k

∞∑
j=k

anj (tjk (p))−1 ×

(
k∑
j=1

tkj (p)xj

)
=

∑
k=1

ankxk

for all n ∈ N. Hence, we have Dy = Ax and this leads us to D ∈
(` (p) , λ).

Conversely, let An ∈ {|φz| (p)}β for all n ∈ N , D ∈ (` (p) , λ) and
x ∈ |φz| (p) . Then Ax exists. So we derive from the equality

m∑
k=1

ankxk =
m∑
k=1

ank

k∑
j=1

(
k∑
r=j

f̂krz
−1/p

′
j

j

)
yj =

m∑
k=1

d
(m)
nk yk,

where d
(m)
nj =

m∑
k=j

ank

(
k∑
r=j

f̂krz
−1/p

′
j

j

)
, as m→∞ that Ax = Dy. Then,

we have A ∈ (|φz| (p) , λ).
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Theorem 3.8. Let λ be any given sequence space. Then, A ∈
(λ, |φz| (p)) if and only if B ∈ (λ, ` (p)), where B = (bnk) is defined
by

bnk =
n∑
j=1

z1/p
′
n

n (fnj − fn−1,j) ajk.

Proof. Let u ∈ λ and consider

(18)
m∑
k=1

bnkuk =
n∑
j=1

z1/p
′
n

n (fnj − fn−1,j)
m∑
k=1

ajkuk.

Then, as m→∞ in (18), we have (Bu)n = (T (p) (Au))n , where T (p) =
E (p) ◦ F. So, we can see that Au ∈ |φz| (p) whenever u ∈ λ if and only
if Bu ∈ ` (p) whenever u ∈ λ. This completes the proof.
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[23] E. Malkowsky and E. Savaş, Matrix transformations between sequence spaces of
generalized weighted mean, Appl. Math. Comput. 147 (2004), 333–345.
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[32] M. Yeşilkayagil and F. Başar, On the paranormed Nörlund sequence space of

nonabsolute type, Abstr. Appl. Anal. 2014 (2014), Article ID: 858704.
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Merve İlkhan
Department of Mathematics, Faculty of Science and Arts
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