2-COLOR RADO NUMBER FOR

$$
x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}=z
$$

Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song*

Abstract

An r-color Rado number $N=R(\mathcal{L}, r)$ for a system \mathcal{L} of equations is the least integer, provided it exists, such that for every r-coloring of the set $\{1,2, \ldots, N\}$, there is a monochromatic solution to \mathcal{L}. In this paper, we study the 2 -color Rado number $R(\mathcal{E}, 2)$ for $\mathcal{E}: x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}=z$ when $n \geq 4$.

1. Introduction

For $a, b \in \mathbb{N}$ with $a<b$, let $[a, b]=\{a, a+1, \ldots, b\}$. A function $c:[1, N] \rightarrow[1, r]$ is called an r-coloring of the set $[1, N]$. A solution $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ to an equation L is said to be monochromatic if $c\left(x_{1}\right)=$ $c\left(x_{2}\right)=\cdots=c\left(x_{n}\right)$.

In 1916 Schur [17] proved the existence of the number $N=S(r)$ such that for a given integer $r \geq 2$ and every r-coloring of the set $[1, N]$, there exists a monochromatic solution to $x+y=z$. The least such integer is called the r-color Schur number $S(r)$. There are some known Schur numbers such as $S(2)=5, S(3)=14, S(4)=45[18]$ and $S(5)=161$ [5], but it is unknown yet for $r \geq 6$. Motivated by the Schur numbers, Rado considered the same problem for a system of linear equations instead

[^0]of the single equation $x+y=z$. He found the necessary and sufficient conditions to determine if an arbitrary system of linear equations admits a monochromatic solution for every coloring of the natural numbers with a finite number of colors $[3,10]$. If such a system always has a monochromatic solution, then there is N such that for every r-coloring of $[1, N]$ this system has a monochromatic solution. The least number N satisfying this property is called the r-color Rado number for the system.

The results on Rado number has been conducted mainly in 2-color for a specific linear equation. As the most natural generalization of the 2-color Schur number $S(2)$, Beutelspacher and Brestovansky [2] found the 2 -color Rado number for $x_{1}+x_{2}+\cdots+x_{m-1}=x_{m}$. Harborth and Maasberg [6,7] studied the 2-color Rado number for $a(x+y)=b z$ which is another generalization of it.

Hopkins and Schaal [8] found the 2-color Rado number for some special classes of $\sum_{i=1}^{m-1} a_{i} x_{i}=x_{m}$ and conjectured for the general case. Guo and Sun [4] proved this conjecture. Robertson and Myers [11] computed the 2-color Rado number for some special classes of $x+y+k z=\ell w$, and Saracino and Wynne [16] obtained this number when $\ell=3$. In $[14,15]$, Saracino studied the 2-color Rado number for $x_{1}+x_{2}+\cdots+x_{m-1}=a x_{m}$. There are some interesting results $[1,9,12]$ in two important variants of Rado numbers, disjunctive Rado numbers and off-diagonal Rado numbers.

Most of the results on Rado number have been limited on 2-color or r-color Rado number for single equation. Consider a system of linear equation $\mathcal{E}: x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}=z$. It is known that the 2 -color Rado number for $x_{1}+x_{2}+\cdots+x_{n}=z$ is $n^{2}+n-1$ [2] and that the 2 -color Rado number for $x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}$ is $\left\lceil\frac{n}{2}\left\lceil\frac{n}{2}\right\rceil\right\rceil$ [13]. In this paper we show that the 2-color Rado number for the system of equations \mathcal{E} is $n^{2}+n-1$, which is the same with that for $x_{1}+x_{2}+\cdots+x_{n}=z$.

2. Main Result

Lemma 1. [2] For $n \geq 4$, the 2-color Rado number for $x_{1}+x_{2}+\cdots+$ $x_{n}=z$ is $n^{2}+n-1$.

Consider the system of equation $\mathcal{E}: x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}=z$ for $n \geq 4$. By Lemma 1 , the 2 -color Rado number $R(\mathcal{E}, 2)$ for \mathcal{E} is greater than or equals to $n^{2}+n-1$. Thus when $N \geq n^{2}+n-1$, if we find a
monochromatic solution to \mathcal{E}, then we can prove that the 2-color Rado number for \mathcal{E} is $n^{2}+n-1$.

Theorem 1. If $n \geq 4$, then the 2 -color Rado number for \mathcal{E} is $n^{2}+n-1$.
Since the 2-color Rado number for $x_{1}+x_{2}+\cdots+x_{n}=z$ is $n^{2}+n-1$, we have $R(\mathcal{E}, 2) \geq n^{2}+n-1$. Thus it suffices to prove $R(\mathcal{E}, 2) \leq n^{2}+n-1$. Let $c:\left[1, n^{2}+n-1\right] \rightarrow\{0,1\}$ be a 2 -coloring and let $S_{c}(\mathcal{E})$ be the set of all $\left[\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}\right), z\right]$ such that $x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}=z$, $c\left(x_{i}\right)=c\left(y_{j}\right)=c(z)$ and $x_{i}, y_{j}, z \in\left[1, n^{2}+n-1\right]$ for all $i=1,2, \ldots, n$ and $j=1,2$. The inequality $R(\mathcal{E}, 2) \leq n^{2}+n-1$ follows from $S_{c}(\mathcal{E}) \neq \emptyset$.

Suppose that $S_{c}(\mathcal{E})=\emptyset$. We want to find a contradiction in each case. The proof consists of case by case considerations. We divide all the cases into following 18 cases.

Case (1): $c(n)=c(2)=c\left(n^{2}\right)=0$.
From the assumption, we have the following.

$$
\begin{aligned}
& c(n-1)=1, \text { since otherwise }[(1, \ldots, 1),(n-1,1), n] \in S_{c}(\mathcal{E}), \\
& c(n-2)=1, \text { since otherwise }[(1, \ldots, 1),(n-2,2), n] \in S_{c}(\mathcal{E}), \\
& c(2 n)=1, \text { since otherwise }[(2, \ldots, 2),(n, n), 2 n] \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-n\right)=1 \text {, since otherwise }\left[(n, \ldots, n),\left(n^{2}-n, n\right), n^{2}\right] \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-1\right)=1 \text {, since otherwise }\left[(n, \ldots, n),\left(n^{2}-1,1\right), n^{2}\right] \in S_{c}(\mathcal{E}) .
\end{aligned}
$$

Thus, $\left[(n-1, \ldots, n-1, n-2, n-2,2 n),\left(n^{2}-n, n-1\right), n^{2}-1\right] \in S_{c}(\mathcal{E})$. This is a contradiction.

Case (2): $c(n)=c(2)=0, c\left(n^{2}\right)=1, c\left(n^{2}-n+1\right)=0$.
We have $c(n-1)=c(n-2)=c(2 n)=1$ by the same method as in Case (1). Also we have $c\left(n^{2}-n+2\right)=1$ since otherwise $\left[(n, \ldots, n, 2),\left(n^{2}-\right.\right.$ $\left.n+1,1), n^{2}-n+2\right] \in S_{c}(\mathcal{E})$.

Thus, $\left[(n-1, \ldots, n-1, n-2,2 n),\left(n^{2}-n+2, n-2\right), n^{2}\right]$ satisfies \mathcal{E}. This is a contradiction.

Case (3): $c(n)=c(2)=0, c\left(n^{2}\right)=c\left(n^{2}-n+1\right)=1$.
We have $c(n-1)=c(n-2)=c(2 n)=1$ by the same method as in Case (1). Thus, $\left[(n-1, \ldots, n-1, n-2,2 n),\left(n^{2}-n+1, n-1\right), n^{2}\right]$ $\in S_{c}(\mathcal{E})$, This is a contradiction.

Case (4): $c(n)=0, c(2)=1, c(2 n)=c\left(n^{2}\right)=c\left(n^{2}+n-1\right)=0$.
From the assumption, we have the following.

$$
\begin{aligned}
& c\left(n^{2}-n\right)=1, \text { since otherwise }\left[(n, \ldots, n),\left(n^{2}-n, n\right), n^{2}\right] \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-2 n\right)=1, \text { since otherwise }\left[(n, \ldots, n),\left(n^{2}-2 n, 2 n\right), n^{2}\right] \in \\
& S_{c}(\mathcal{E}), \\
& c(n-1)=1 \text {, since otherwise }\left[\left(1, \ldots, 1, n^{2}\right),\left(n^{2}, n-1\right), n^{2}+n-1\right] \\
& \in S_{c}(\mathcal{E}), \\
& c(n+1)=1, \text { since otherwise }[(1, \ldots, 1, n+1),(n, n), 2 n] \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-n+2\right)=0, \text { since otherwise }\left[(n+1, \ldots, n+1,2,2),\left(n^{2}-\right.\right. \\
& \left.n, 2), n^{2}-n+2\right] \in S_{c}(\mathcal{E}) . \\
& c(n-2)=1, \text { since otherwise }\left[(n, \ldots, n),\left(n^{2}-n+2, n-2\right), n^{2}\right] \\
& \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-n-1\right)=0, \text { since otherwise }\left[(n-1, \ldots, n-1, n-2),\left(n^{2}-\right.\right. \\
& \left.2 n, n-1), n^{2}-n-1\right] \in S_{c}(\mathcal{E}),
\end{aligned}
$$

Thus, $\left[\left(1, \ldots, 1, n^{2}\right),\left(n^{2}-n-1,2 n\right), n^{2}+n-1\right] \in S_{c}(\mathcal{E})$, This is a contradiction.

Case (5): $c(n)=0, c(2)=1, c(2 n)=c\left(n^{2}\right)=0, c\left(n^{2}+n-1\right)=1$.
From the assumption, we have the following

```
\(c(n+1)=1\), since otherwise \([(1, \ldots, 1, n+1),(n, n), 2 n] \in S_{c}(\mathcal{E})\),
\(c\left(n^{2}-n\right)=1\), since otherwise \(\left[(n, \ldots, n),\left(n^{2}-n, n\right), n^{2}\right] \in S_{c}(\mathcal{E})\),
\(c\left(n^{2}+1\right)=1\), since otherwise \(\left[(n, \ldots, n, 2 n, 1),\left(n^{2}, 1\right), n^{2}+1\right] \in\)
\(S_{c}(\mathcal{E})\),
```

Thus, $\left[(n+1, \ldots, n+1,2),\left(n^{2}-n, n+1\right), n^{2}+1\right] \in S_{c}(\mathcal{E})$, This is a contradiction.

Case (6): $c(n)=0, c(2)=1, c(2 n)=0, c\left(n^{2}\right)=1, c\left(n^{2}+2\right)=0$.
From the assumption, we have the following.

$$
c(n+1)=1 \text {, since otherwise }[(1, \ldots, 1, n+1),(n, n), 2 n] \in S_{c}(\mathcal{E}) \text {, }
$$

$c\left(n^{2}-n+2\right)=1$, since otherwise $\left[(n, \ldots, n, 2 n, 2 n, 1,1),\left(n^{2}-n+\right.\right.$ $\left.2, n), n^{2}+2\right] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}-2 n+2\right)=1$, since otherwise $\left[(n, \ldots, n, 2 n, 2 n, 1,1),\left(n^{2}-\right.\right.$ $\left.2 n+2,2 n), n^{2}+2\right] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}+1\right)=1$, since otherwise $\left[(n, \ldots, n, 2 n, 2 n, 1,1),\left(n^{2}+1,1\right), n^{2}+\right.$ 2] $\in S_{c}(\mathcal{E})$,
$c(n-1)=0$, since otherwise $\left[(n+1, \ldots, n+1,2),\left(n^{2}-n+2, n-\right.\right.$ 1), $\left.n^{2}+1\right] \in S_{c}(\mathcal{E})$,
$c(2 n-1)=1$, since otherwise $[(1, \ldots, 1, n),(n, n-1), 2 n-1] \in$ $S_{c}(\mathcal{E})$,
Thus, $\left[(n+1, \ldots, n+1,2),\left(n^{2}-2 n+2,2 n-1\right), n^{2}+1\right] \in S_{c}(\mathcal{E})$, This is a contradiction.

Case (7): $c(n)=0, c(2)=1, c(2 n)=0, c\left(n^{2}\right)=c\left(n^{2}+2\right)=1$.
From the assumption, we have the following.
$c(n+1)=1$, since otherwise $[(1, \ldots, 1, n+1),(n, n), 2 n] \in S_{c}(\mathcal{E})$,
$c(n+2)=0$, since otherwise $\left[(n+1, \ldots, n+1, n+2,2),\left(n^{2}, 2\right), n^{2}+2\right]$ $\in S_{c}(\mathcal{E})$,
$c(3)=0$, since otherwise $\left[(n+1, \ldots, n+1,3),\left(n^{2}, 2\right), n^{2}+2\right] \in S_{c}(\mathcal{E})$, $c(n-1)=1$, since otherwise $[(1, \ldots, 1,3),(n-1,3), n+2] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}-2 n+4\right)=0$, since otherwise $\left[\left(2, \ldots, 2, n^{2}-2 n+4\right),\left(n^{2}, 2\right), n^{2}+\right.$
2] $\in S_{c}(\mathcal{E})$,
$c\left(n^{2}-2 n+1\right)=1$, since otherwise $\left[(n, \ldots, n, 1,3),\left(n^{2}-2 n+\right.\right.$ $\left.1,3), n^{2}-2 n+4\right] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}-2 n+3\right)=1$, since otherwise $\left[(n, \ldots, n, 1,3),\left(n^{2}-2 n+\right.\right.$ $\left.3,1), n^{2}-2 n+4\right] \in S_{c}(\mathcal{E})$,
Thus, $\left[(n-1, \ldots, n-1,2),\left(n^{2}-2 n+1,2\right), n^{2}-2 n+3\right] \in S_{c}(\mathcal{E})$, This is a contradiction.

Case (8): $c(n)=0, c(2)=c(2 n)=1, c\left(n^{2}\right)=0$.
From the assumption, we have the following.

$$
\begin{aligned}
& c(2 n-2)=0 \text {, since otherwise }[(2, \ldots, 2),(2 n-2,2), 2 n] \in S_{c}(\mathcal{E}), \\
& c(n-1)=1 \text {, since otherwise }[(1, \ldots, 1, n-1),(n-1, n-1), 2 n-2] \\
& \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-1\right)=1 \text {, since otherwise }\left[(n, \ldots, n),\left(n^{2}-1,1\right), n^{2}\right] \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}+1\right)=0 \text {, since otherwise }\left[(n, \ldots, n-1,2 n),\left(n^{2}-1,2\right), n^{2}+1\right] \\
& \in S_{c}(\mathcal{E}), \\
& c(n+1)=1 \text {, since otherwise }\left[(n, \ldots, n, n+1),\left(n^{2}, 1\right), n^{2}+1\right] \in \\
& S_{c}(\mathcal{E}),
\end{aligned}
$$

Thus, $[(2, \ldots, 2),(n-1, n+1), 2 n] \in S_{c}(\mathcal{E})$, This is a contradiction.

Case (9): $c(n)=0, c(2)=c(2 n)=c\left(n^{2}\right)=1, c\left(n^{2}+n-1\right)=0$.
We have $c(2 n-2)=0$ and $c(n-1)=1$ by the same method as in Case (8). Also we have
$c(n+1)=0$, since otherwise $[(2, \ldots, 2),(n+1, n-1), 2 n] \in S_{c}(\mathcal{E})$, $c\left(n^{2}-2\right)=1$, since otherwise $\left[(n+1, \ldots, n+1, n),\left(n^{2}-2, n+\right.\right.$ 1), $\left.n^{2}+n-1\right] \in S_{c}(\mathcal{E})$,
$c(2 n-1)=0$, since otherwise $\left[(n-1, \ldots, n-1,2 n-1),\left(n^{2}-2,2\right), n^{2}\right]$
$\in S_{c}(\mathcal{E})$,
$c(n-2)=0$, since otherwise $\left[(n-1, \ldots, n-1, n-2,2 n),\left(n^{2}-\right.\right.$ $\left.2,2), n^{2}\right] \in S_{c}(\mathcal{E})$,
Thus, $[(1, \ldots, 1, n),(n-2, n+1), 2 n-1] \in S_{c}(\mathcal{E})$, This is a contradiction.
Case (10): $c(n)=0, c(2)=c(2 n)=c\left(n^{2}\right)=c\left(n^{2}+n-1\right)=1$.
We have $c(n-1)=1$ and $c(2 n-2)=0$ by the same method as in Case (9). Also we have $c\left(n^{2}-n+1\right)=0$, since otherwise $\left[\left(2, \ldots, 2, n^{2}-\right.\right.$ $\left.n+1),\left(n^{2}, n-1\right), n^{2}+n-1\right] \in S_{c}(\mathcal{E})$. We have $c\left(n^{2}-n\right)=1$, since otherwise $\left[(n, \ldots, n, 1),\left(n^{2}-n, 1\right), n^{2}-n+1\right] \in S_{c}(\mathcal{E})$.

Also we have $c\left(n^{2}-2 n+1\right)=0$, since otherwise $[(n-1, \ldots, n-$ 1), $\left.\left(n^{2}-2 n+1, n-1\right), n^{2}-n\right] \in S_{c}(\mathcal{E})$. And we have $c\left(n^{2}-n+1\right)=1$, since otherwise $\left[(n, \ldots, n, 1),\left(n^{2}-2 n+1, n\right), n^{2}-n+1\right] \in S_{c}(\mathcal{E})$,

Thus, $\left[\left(2, \ldots, 2, n^{2}-n+1\right),\left(n^{2}, n-1\right), n^{2}+n-1\right] \in S_{c}(\mathcal{E})$. This is a contradiction.

Case (11): $c(n)=1, c\left(n^{2}\right)=c(n+1)=0$.
From the assumption, we have the following.

```
\(c\left(n^{2}-1\right)=1\), since otherwise \(\left[(n+1, \ldots, n+1,1),\left(n^{2}-1,1\right), n^{2}\right]\)
\(\in S_{c}(\mathcal{E})\),
\(c\left(n^{2}-n-1\right)=1\), since otherwise \(\left[(n+1, \ldots, n+1,1),\left(n^{2}-n-\right.\right.\)
\(\left.1, n+1), n^{2}\right] \in S_{c}(\mathcal{E})\),
\(c(n-1)=0\), since otherwise \(\left[(n, \ldots, n, n-1),\left(n^{2}-n-1, n\right), n^{2}-1\right]\)
\(\in S_{c}(\mathcal{E})\),
\(c\left(n^{2}-n+1\right)=1\), since otherwise \(\left[(n+1, \ldots, n+1,1),\left(n^{2}-n+\right.\right.\)
\(\left.1, n-1), n^{2}\right] \in S_{c}(\mathcal{E})\),
\(c(2)=1\), since otherwise \([(1, \ldots, 1,2),(n-1,2), n+1] \in S_{c}(\mathcal{E})\),
\(c(2 n)=1\), since otherwise \([(1, \ldots, 1, n+1),(n-1, n+1), 2 n] \in\)
\(S_{c}(\mathcal{E})\),
```

Thus, $[(2, \ldots, 2),(n, n), 2 n] \in S_{c}(\mathcal{E})$, This is a contradiction.
Case (12): $c(n)=1, c\left(n^{2}\right)=0, c(n+1)=1, c\left(n^{2}+n-1\right)=$ $c(n+2)=0$.

From the assumption, we have the following.
$c(n-1)=1$, since otherwise $\left[(n+2, \ldots, n+2,1),\left(n^{2}, n-1\right), n^{2}+\right.$ $n-1] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}+n-2\right)=1$, since otherwise $\left[(n+2, \ldots, n+2,1),\left(n^{2}+n-\right.\right.$ $\left.2,1), n^{2}+n-1\right] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}-2\right)=0$, since otherwise $\left[(n+1, \ldots, n+1, n, n),\left(n^{2}-2, n\right), n^{2}+\right.$ $n-2] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}-3\right)=0$, since otherwise $\left[(n+1, \ldots, n+1, n, n),\left(n^{2}-3, n+\right.\right.$ 1), $\left.n^{2}+n-2\right] \in S_{c}(\mathcal{E})$,

Thus, $\left[(n+2, \ldots, n+2,1,1),\left(n^{2}-3,1\right), n^{2}-2\right] \in S_{c}(\mathcal{E})$, This is a contradiction.

Case (13): $c(n)=1, c\left(n^{2}\right)=0, c(n+1)=1, c\left(n^{2}+n-1\right)=$ $0, c(n+2)=1, c(2 n)=0$.

From the assumption, we have $c(n-1)=c\left(n^{2}-n-1\right)=c\left(n^{2}+n-2\right)=$ 1 , since otherwise $\left[\left(1, \ldots, 1, n^{2}\right),\left(n^{2}, n-1\right), n^{2}+n-1\right] \in S_{c}(\mathcal{E})$, and $n^{2}+(n-1)=\left(n^{2}-n-1\right)+2 n=\left(n^{2}+n-2\right)+1$. We also have the following

$$
\begin{aligned}
& c(2 n-1)=0, \text { since otherwise }\left[(n+1, \ldots, n+1, n, n),\left(n^{2}-n-\right.\right. \\
& \left.1,2 n-1), n^{2}+n-2\right] \in S_{c}(\mathcal{E}), \\
& c(2)=1, \text { since otherwise }[(2, \ldots, 2),(2 n-1,1), 2 n] \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-n+1\right)=0, \text { since otherwise }\left[(n-1, \ldots, n-1, n),\left(n^{2}-n-\right.\right. \\
& \left.1,2), n^{2}-n+1\right] \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-1\right)=0, \text { since otherwise }\left[(n+1, \ldots, n+1, n-1),\left(n^{2}-1, n-\right.\right. \\
& \left.1), n^{2}+n-2\right] \in S_{c}(\mathcal{E}),
\end{aligned}
$$

Thus, $\left[\left(1, \ldots, 1, n^{2}-n+1\right),\left(n^{2}-1,1\right), n^{2}\right] \in S_{c}(\mathcal{E})$, This is a contradiction.
Case (14): $c(n)=1, c\left(n^{2}\right)=0, c(n+1)=1, c\left(n^{2}+n-1\right)=$ $0, c(n+2)=c(2 n)=1$.

From the assumption, we have the following.
$c(n-1)=1$, since otherwise $\left[\left(1, \ldots, 1, n^{2}\right),\left(n^{2}, n-1\right), n^{2}+n-1\right]$ $\in S_{c}(\mathcal{E})$,
$c(2)=0$, since otherwise $[(2, \ldots, 2),(n+1, n-1), 2 n] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}+n-2\right)=1$, since otherwise $\left[\left(1, \ldots, 1, n^{2}\right),\left(n^{2}+n-2,1\right), n^{2}+\right.$ $n-1] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}-2\right)=0$, since otherwise $\left[(n+1, \ldots, n+1, n, n),\left(n^{2}-2, n\right), n^{2}+\right.$ $n-2] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}-n-2\right)=0$, since otherwise $\left[(n+1, \ldots, n+1, n, n),\left(n^{2}-n-\right.\right.$ $\left.2,2 n), n^{2}+n-2\right] \in S_{c}(\mathcal{E})$,
Thus, $\left[\left(1, \ldots, 1,2,2,2, n^{2}-n-2\right),\left(n^{2}-2,2\right), n^{2}\right] \in S_{c}(\mathcal{E})$, This is a contradiction.

Case (15): $c(n)=1, c\left(n^{2}\right)=0, c(n+1)=c\left(n^{2}+n-1\right)=1$.
From the assumption, we have the following.

```
\(c\left(n^{2}-1\right)=0\), since otherwise \(\left[(n+1, \ldots, n+1, n),\left(n^{2}-1, n\right), n^{2}+\right.\)
\(n-1] \in S_{c}(\mathcal{E})\),
\(c\left(n^{2}-2\right)=0\), since otherwise \(\left[(n+1, \ldots, n+1, n),\left(n^{2}-2, n+\right.\right.\)
1), \(\left.n^{2}+n-1\right] \in S_{c}(\mathcal{E})\),
\(c\left(n^{2}-n+1\right)=1\), since otherwise \(\left[\left(1, \ldots, 1, n^{2}-n+1\right),\left(n^{2}-1,1\right), n^{2}\right]\)
\(\in S_{c}(\mathcal{E})\),
\(c(2 n-2)=0\), since otherwise \(\left[(n+1, \ldots, n+1, n),\left(n^{2}-n+1,2 n-\right.\right.\)
2), \(\left.n^{2}+n-1\right] \in S_{c}(\mathcal{E})\),
\(c(n-1)=1\), since otherwise \([(1, \ldots, 1, n-1),(n-1, n-1), 2 n-2]\)
\(\in S_{c}(\mathcal{E})\),
    \(c\left(n^{2}-2 n\right)=0\), since otherwise \(\left[(n-1, \ldots, n-1, n),\left(n^{2}-2 n, n+\right.\right.\)
    1), \(\left.n^{2}-n+1\right] \in S_{c}(\mathcal{E})\),
    \(c\left(n^{2}-n-1\right)=1\), since otherwise \(\left[\left(1, \ldots, 1, n^{2}-n-1\right),\left(n^{2}-\right.\right.\)
    \(\left.2 n, 2 n-2), n^{2}-2\right] \in S_{c}(\mathcal{E})\),
    \(c(2)=1\), since otherwise \(\left[\left(2, \ldots, 2, n^{2}-2 n\right),\left(n^{2}-2 n, 2 n-2\right), n^{2}-2\right]\)
    \(\in S_{c}(\mathcal{E})\),
```

Thus, $\left[(n-1, \ldots, n-1, n),\left(n^{2}-n-1,2\right), n^{2}-n+1\right] \in S_{c}(\mathcal{E})$, This is a contradiction.

Case (16): $c(n)=c\left(n^{2}\right)=1, c\left(n^{2}-1\right)=0$.
From the assumption, we have the following.
$c\left(n^{2}-n\right)=0$, since otherwise $\left[(n, \ldots, n),\left(n^{2}-n, n\right), n^{2}\right] \in S_{c}(\mathcal{E})$,
$c(n-1)=1$, since otherwise $\left[\left(1, \ldots, 1, n^{2}-n\right),\left(n^{2}-n, n-1\right), n^{2}-1\right]$
$\in S_{c}(\mathcal{E})$,
$c\left(n^{2}-2\right)=1$, since otherwise $\left[\left(1, \ldots, 1, n^{2}-n\right),\left(n^{2}-2,1\right), n^{2}-1\right]$ $\in S_{c}(\mathcal{E})$,
$c(2)=0$, since otherwise $\left[(n, \ldots, n),\left(n^{2}-2,2\right), n^{2}\right] \in S_{c}(\mathcal{E})$, $c\left(n^{2}-n-1\right)=0$, since otherwise $\left[(n, \ldots, n, n-1, n-1),\left(n^{2}-\right.\right.$ $\left.n-1, n-1), n^{2}-2\right] \in S_{c}(\mathcal{E})$,
$c(n+1)=1$, since otherwise $\left[(n+1, \ldots, n+1,1,1),\left(n^{2}-n-\right.\right.$ $\left.1,1), n^{2}-n\right] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}+n-1\right)=0$, since otherwise $\left[(n+1, \ldots, n+1, n),\left(n^{2}, n-\right.\right.$ 1), $\left.n^{2}+n-1\right] \in S_{c}(\mathcal{E})$,
$c\left(n^{2}+n-2\right)=1$, since otherwise $\left[\left(1, \ldots, 1,2, n^{2}-1\right),\left(n^{2}+n-\right.\right.$ $\left.2,1), n^{2}+n-1\right] \in S_{c}(\mathcal{E})$,
Thus, $\left[(n+1, \ldots, n+1, n, n),\left(n^{2}-2, n\right), n^{2}+n-2\right] \in S_{c}(\mathcal{E})$, This is a contradiction.

Case (17): $c(n)=c\left(n^{2}\right)=c\left(n^{2}-1\right)=1, c(n-1)=0$.
We have $c\left(n^{2}-n\right)=0$ by the same method as in Case (16). Also we have

$$
\begin{aligned}
& c\left(n^{2}-n-1\right)=1, \text { since otherwise }\left[(n-1, \ldots, n-1),\left(n^{2}-n-\right.\right. \\
& \left.1,1), n^{2}-n\right] \in S_{c}(\mathcal{E}), \\
& c(n+1)=0, \text { since otherwise }\left[(n, \ldots, n),\left(n^{2}-n-1, n+1\right), n^{2}\right] \\
& \in S_{c}(\mathcal{E}), \\
& c(2)=1 \text {, since otherwise }[(1, \ldots, 1,2),(n-1,2), n+1] \in S_{c}(\mathcal{E}), \\
& c(2 n)=0, \text { since otherwise }[(2, \ldots, 2),(n, n), 2 n] \in S_{c}(\mathcal{E}),
\end{aligned}
$$

Thus, $[(1, \ldots, 1, n+1),(n-1, n+1), 2 n] \in S_{c}(\mathcal{E})$, This is a contradiction.
Case (18): $c(n)=c\left(n^{2}\right)=c\left(n^{2}-1\right)=c(n-1)=1$.
We have $c\left(n^{2}-n\right)=0$ by the same method as in Case (16). Also we have

$$
\begin{aligned}
& c\left(n^{2}-n-1\right)=0, \text { since otherwise }\left[(n, \ldots, n, n-1),\left(n^{2}-n-\right.\right. \\
& \left.1, n), n^{2}-1\right] \in S_{c}(\mathcal{E}), \\
& c(n+1)=1, \text { since otherwise }\left[(n+1, \ldots, n+1,1,1),\left(n^{2}-n-\right.\right. \\
& \left.1,1), n^{2}-n\right] \in S_{c}(\mathcal{E}) \text {, } \\
& c\left(n^{2}-n+1\right)=0 \text {, since otherwise }\left[(n, \ldots, n),\left(n^{2}-n+1, n-1\right), n^{2}\right] \\
& \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-2 n+1\right)=1, \text { since otherwise }\left[\left(1, \ldots, 1, n^{2}-2 n+1\right),\left(n^{2}-\right.\right. \\
& \left.n-1,1), n^{2}-n\right] \in S_{c}(\mathcal{E}), \\
& c(2 n-2)=0 \text {, since otherwise }\left[(n-1, \ldots, n-1,2 n-2),\left(n^{2}-2 n+\right.\right. \\
& \left.1,2 n-2), n^{2}-1\right] \in S_{c}(\mathcal{E}), \\
& c(n-2)=1, \text { since otherwise }\left[(n-2, \ldots, n-2,2 n-2),\left(n^{2}-n-\right.\right. \\
& \left.1,1), n^{2}-n\right] \in S_{c}(\mathcal{E}) \text {, } \\
& c\left(n^{2}+n-1\right)=0 \text {, since otherwise }\left[(n+1, \ldots, n+1, n),\left(n^{2}, n-\right.\right. \\
& \left.1), n^{2}+n-1\right] \in S_{c}(\mathcal{E}) \text {, } \\
& c(2)=1, \text { since otherwise }\left[\left(2, \ldots, 2, n^{2}-n+1\right),\left(n^{2}-n+1,2 n-\right.\right. \\
& \left.2), n^{2}+n-1\right] \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-n+2\right)=0, \text { since otherwise }\left[(n, \ldots, n, n),\left(n^{2}-n+2, n-2\right), n^{2}\right] \\
& \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}+1\right)=0, \text { since otherwise }\left[(n, \ldots, n, n+1),\left(n^{2}-1,2\right), n^{2}+1\right] \\
& \in S_{c}(\mathcal{E}), \\
& c\left(n^{2}-2 n+3\right)=1, \text { since otherwise }\left[\left(1, \ldots, 1, n^{2}-n+2\right),\left(n^{2}-2 n+\right.\right. \\
& \left.3,2 n-2), n^{2}+1\right] \in S_{c}(\mathcal{E}),
\end{aligned}
$$

Thus, $\left[(n-1, \ldots, n-1,2),\left(n^{2}-2 n+1,2\right), n^{2}-2 n+3\right] \in S_{c}(\mathcal{E})$, This is a contradiction.

Acknowledgement

The authors would like to thank anonymous referee for valuable comments and corrections.

References

[1] T. Ahmed and D. Schaal, On generalized Schur numbers, Exp. Math. 25 (2016), 213-218.
[2] A. Beutelspacher and W. Brestovansky, Generalized Schur number, Lecture Notes in Math. 969 (1982), 30-38.
[3] W. Deuber, Developments based on Rado's dissertation 'Studien zur Kombinatorik', in: Survey Combin., Cambridge University Press, 52-74 (1989).
[4] S. Guo and Z.-W. Sun, Determination of the two-color Rado number for $a_{1} x_{1}+$ $\cdots+a_{m} x_{m}=x_{0}$, J. Combin. Theory Ser. A 115 (2008), 345-353.
[5] M.J.H. Heule, Schur number five, The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18),(2018).
[6] H. Harborth and S. Maasberg, Rado numbers for $a(x+y)=b z$, J. Combin. Theory Ser. A 80 (1997), 356-363.
[7] H. Harborth and S. Maasberg, All two-color Rado numbers for $a(x+y)=b z$, Discrete Math. 197/198 (1999), 397-407.
[8] B. Hopkins and D. Schaal, On Rado numbers for $\sum_{i=1}^{m-1} a_{i} x_{i}=x_{m}$, Adv. in Appl. Math. 35 (2005), 433-441.
[9] W. Kosek and D. Schaal, A note on disjunctive Rado numbers, Adv. in Appl. Math. 31 (2003), 433-439.
[10] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 424-480.
[11] A. Robertson and K. Myers, Some two color, four variable Rado numbers, Adv. in Appl. Math. 41 (2008), 214-226.
[12] A. Robertson and D. Schaal, Off-diagonal generalized Schur numbers, Adv. in Appl. Math. 26 (2001), 252-257.
[13] D. Saracino, The 2-color rado number of $x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}+\cdots+y_{k}$, Ars Combinatoria 129 (2016), 315-321.
[14] D. Saracino, The 2-color rado number of $x_{1}+x_{2}+\cdots+x_{m-1}=a x_{m}$, Ars Combinatoria 113 (2014), 81-95.
[15] D. Saracino, The 2-color rado number of $x_{1}+x_{2}+\cdots+x_{m-1}=a x_{m}$, II, Ars Combinatoria 119 (2015), 193-210.
[16] D. Saracino and B. Wynne, The 2-color Rado number of $x+y+k z=3 w$, Ars Combinatoria 90 (2009), 119-127.
[17] I. Schur, Über die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jahresber. Deutsch. Math.-Verein. 25 (1916), 114-117.
[18] W. Wallis, A. Street and J. Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices, Lecture Notes in Math. 48, Springer (1972).

Byeong Moon Kim

Department of Mathematics
Gangneung-Wonju National University
Gangneung 25457, Korea
E-mail: kbm@gwnu.ac.kr

Woonjae Hwang

Division of Applied Mathematical Sciences
Korea University, Sejong 30019, Korea
E-mail: woonjae@korea.ac.kr

Byung Chul Song

Department of Mathematics
Gangneung-Wonju National University
Gangneung 25457, Korea
E-mail: bcsong@gwnu.ac.kr

[^0]: Received January 19, 2020. Revised June 20, 2020. Accepted June 22, 2020.
 2010 Mathematics Subject Classification: 05D10.
 Key words and phrases: Rado number, Schur number, Ramsey theory, r-coloring.

 * Corresponding author.

 This work was supported by Basic Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(Grant No. NRF-2017R1D1A1B03028961).
 (c) The Kangwon-Kyungki Mathematical Society, 2020.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

