CORRIGENDUM TO “THE IDEAL OF WEAKLY p-NUCLEAR OPERATORS AND ITS INJECTIVE AND SURJECTIVE HULLS” [J. KOREAN MATH. SOC. 56 (2019), NO. 1, PP. 225–237]

JU MYUNG KIM

Abstract. We indicate that some results in [2] are wrong, and obtain some new results on them.

1. Weakly 1-nuclear operators

We use all notations, terminologies and definitions in [2]. Let us recall the concept of a weakly 1-nuclear operator from a Banach space X to a Banach space Y as any operator which can be represented as

$$T = \sum_{n=1}^{\infty} x_n^* \otimes y_n \in \mathcal{N}_{w1}(X,Y),$$

where $(x_n^*)_n \in \ell^w_1(X^*)$ and $(y_n)_n \in c^w_0(Y)$. Every weakly 1-nuclear operator $T : X \to Y$ is weakly compact because $T(B_X)$ is contained in the convex hull of a weakly null sequence in Y.

Proposition 1.1 ([2, Proposition 2.2]). Let $1 \leq p \leq \infty$ and let $T : X \to Y$ be a linear map. Then $T \in \mathcal{N}_{wp}(X,Y)$ if and only if there exist $R \in \mathcal{L}(X,\ell_p)$ and $S \in \mathcal{L}(\ell_p,Y)$ (ℓ_p is replaced by c_0 if $p = \infty$) such that $T = SR$. In this case, $\|T\|_{\mathcal{N}_{wp}} = \inf \|S\|\|R\|$, where the infimum is taken over all such factorizations.

The case $p = 1$ in Proposition 1.1 is wrong. Indeed, if that statement would be true, then the identity map $id_{\ell_1} : \ell_1 \to \ell_1$ should be a weakly compact operator. This is a contradiction because ℓ_1 has the Schur property.

The following lemma is well known but we provide a proof for the sake of completeness of our presentation.

Received November 10, 2019; Accepted January 31, 2020.

2010 Mathematics Subject Classification. 46B28, 46B45, 47L20.

Key words and phrases. Banach operator ideal, nuclear operator.

This work was supported by National Research Foundation of Korea (NRF-2018 R1D1A1B07043566).

©2020 Korean Mathematical Society
Lemma 1.2. Let X and Y be Banach spaces. An operator $T : X^* \to Y$ is weak* to weak continuous if and only if $T^*(Y^*) \subset i_X(X)$, where $i_X : X \to X^{**}$ is the canonical isometry.

Proof. Assume that T is weak* to weak continuous and let $y^* \in Y^*$. To show that T^*y^* is a weak* continuous functional, let $(x_n^*)_n$ be a net in X^* and let $x^* \in X^*$ be such that $\lim_n x_n^* = x^*$ in the weak* topology on X^*. Since T is weak* to weak continuous,

$$\lim_n T^*y^*(x_n^*) = \lim_n y^*(Tx_n^*) = y^*(Tx^*) = T^*y^*(x^*).$$

To show the converse, let $(x_n^*)_n$ be a net in X^* and let $x^* \in X^*$ be such that $\lim_n x_n^* = x^*$ in the weak* topology on X^*. By assumption, for every $y^* \in Y^*$,

$$\lim_n y^*(Tx_n^*) = \lim_n T^*y^*(x_n^*) = T^*y^*(x^*) = y^*(Tx^*).$$

Hence T is weak* to weak continuous. \[\square\]

We now obtain some factorizations of weakly 1-nuclear operators.

Theorem 1.3. Let X and Y be Banach spaces and let $T : X \to Y$ be a linear map. Then the following statements are equivalent.

(a) $T \in \mathcal{N}_{w1}(X,Y)$.
(b) There exist an operator $R : X \to \ell_1$ and a weak* to weak continuous operator $S : \ell_1 \to Y$ such that $T = SR$.
(c) There exist operators $R : X \to \ell_1$ and $S \in \mathcal{N}_{w1}(\ell_1,Y)$ such that $T = SR$.

In this case, $\|T\|_{\mathcal{N}_{w1}} = \inf \|S\| \|R\| = \inf \|S\|_{\mathcal{N}_{w1}} \|R\|$, where the infimums are taken over all such factorizations.

Proof. (c)\Rightarrow(a) is clear and $\|T\|_{\mathcal{N}_{w1}} \leq \inf \| \cdot \|_{\mathcal{N}_{w1}} \| \cdot \|$.

(a)\Rightarrow(b): Let $T \in \mathcal{N}_{w1}(X,Y)$ and let

$$T = \sum_{n=1}^{\infty} x_n^* \otimes y_n$$

be an arbitrary weakly 1-nuclear representation. Consider the maps

$$R : X \to \ell_1, \, x \mapsto (x_n^*(x))_n \quad \text{and} \quad S : \ell_1 \to Y, \, (\alpha_n)_n \mapsto \sum_{n=1}^{\infty} \alpha_n y_n.$$

Then we see that $\|R\| = \|(x_n^*)_n\|_1$ and $\|S\| = \|(y_n)_n\|_\infty$.

Also, for every $y^* \in Y^*$ and $(\alpha_n)_n \in \ell_1$,

$$(S^*y^*)((\alpha_n)_n) = \sum_{n=1}^{\infty} \alpha_n y^*(y_n) = ((\alpha_n)_n, (y^*(y_n))_n).$$
Since \((y_n) \in c_0^w(Y)\), \(S^*(y^*) \in i_{c_0}(c_0)\). Thus by Lemma 1.2, \(S\) is weak* to weak continuous and the following diagram is commutative.

\[
\begin{array}{ccc}
X & \xrightarrow{T} & Y \\
\downarrow & & \downarrow S \\
\ell_1 & & R
\end{array}
\]

Since the weakly 1-nuclear representation of \(T\) was arbitrary, \(\inf \| \cdot \|_{\mathcal{N}_w} \leq \|T\|_{\mathcal{N}_w}^w\).

(b)⇒(c): Let \(T\) have the following factorization in (b).

\[
\begin{array}{ccc}
X & \xrightarrow{T} & Y \\
\downarrow & & \downarrow S \\
\ell_1 & & R
\end{array}
\]

It follows that

\[
S = \sum_{n=1}^{\infty} e_n^* \otimes Se_n
\]

and \(\|(e_n^*)\|_w^w = 1\), where \(e_n\) and \(e_n^*\) are the standard unit vectors in \(\ell_1\) and \(c_0\), respectively. Since \(S\) is weak* to weak continuous and \(\lim_{n \to \infty} e_n = 0\) in the weak* topology on \(\ell_1\), \((Se_n)_{n} \in c_0^w(Y)\) and \(\|(Se_n)_{n}\|_\infty \leq \|S\|\).

Consequently, \(S \in \mathcal{N}_w(\ell_1, Y)\) and

\[
\inf \| \cdot \|_{\mathcal{N}_w} \| \cdot \| \leq \|S\| \|R\|.
\]

It was shown in [2, Lemma 2.3] that if \(1 < p \leq \infty\), then for every Banach space \(X\), \(\mathcal{N}_{wp}(X, \ell_p)\) (respectively, \(\mathcal{N}_{wp}(\ell_p, X)\)) is isometrically equal to \(\mathcal{L}(X, \ell_p)\) (respectively, \(\mathcal{L}(\ell_p, X)\) \((\ell_p = c_0\) when \(p = \infty\)). For the case \(p = 1\), we have:

Proposition 1.4. For every Banach space \(X\),

\[
\mathcal{N}_w(X, \ell_1) = \mathcal{K}(X, \ell_1)
\]

holds isometrically.

Proof. Note that

\[
\mathcal{N}_w(X, \ell_1) \subset W(X, \ell_1) = \mathcal{K}(X, \ell_1).
\]

To show the reverse inclusion, let \(T = \sum_{n=1}^{\infty} e_n^* T \otimes e_n \in \mathcal{K}(X, \ell_1)\) and let \(\varepsilon > 0\). Since \(T(B_X)\) is a relatively compact subset of \(\ell_1\),

\[
\lim_{l \to \infty} \sup_{x \in B_X} \sum_{n \geq l} |e_n^* Tx| = 0.
\]

THE IDEAL OF WEAKLY p-NUCLEAR OPERATORS

1055
Then there exists a sequence \((\beta_n)\) with \(\beta_n > 1\) and \(\lim_{n \to \infty} \beta_n = \infty\) such that
\[
\lim_{l \to \infty} \sup_{x \in B_X} \sum_{n \geq l} |\beta_n e_n^* Tx| = 0 \quad \text{and} \quad \sup_{x \in B_X} \sum_{n = 1}^{\infty} |\beta_n e_n^* Tx| \leq (1 + \varepsilon) \sup_{x \in B_X} \sum_{n = 1}^{\infty} |e_n^* Tx|
\]
(cf. [3, Lemma 3.1]). Now, we see that
\[
T = \sum_{n=1}^{\infty} \beta_n e_n^* T \otimes (e_n / \beta_n) \in N_{w1}(X, \ell_1)
\]
and
\[
\|T\|_{N_{w1}} \leq (1 + \varepsilon) \sup_{x \in B_X} \sum_{n = 1}^{\infty} |e_n^* Tx| = (1 + \varepsilon) \|T\|.
\]

2. Weakly 1-compact sets

A subset \(K\) of a Banach space \(X\) is called weakly 1-compact if there exists \((x_n) \in \ell^w_p(X)\) such that
\[
K \subset 1-\text{co}(x_n) := \left\{ \sum_{n=1}^{\infty} \alpha_n x_n : (\alpha_n) \in B_{c_0} \right\}.
\]

Proposition 2.1 ([2, Lemma 3.5(a)]). Let \(X\) be a Banach space. For \(1 \leq p < \infty\), if \((x_n) \in \ell^w_p(X)\), then the set \(p-co(x_n)\) is balanced, convex and weakly compact.

The case \(p = 1\) in Proposition 2.1 is wrong. Indeed, let \((e_n)\) be the sequence of standard unit vectors in \(c_0\). Then we see that \((e_n) \in \ell^w_1(c_0)\) and \(1-co(e_n) = B_{c_0}\). Consequently, \(B_{c_0}\) is a weakly 1-compact subset of \(c_0\). But it is not weakly compact. Generally, we have:

Proposition 2.2. The following statements are equivalent for a Banach space \(X\).

(a) \(X\) does not have an isomorphic copy of \(c_0\).

(b) Every weakly 1-compact set in \(X\) is relatively compact.

(c) Every weakly 1-compact set in \(X\) is relatively weakly compact.

(d) For every \((x_n) \in \ell^w_1(X)\), the set \(1-co(x_n)\) is relatively weakly compact.

Proof. (b)⇒(c) and (c)⇒(d) are trivial.

It is well known that a Banach space \(X\) does not have an isomorphic copy of \(c_0\) if and only if every weakly \(1\)-summable sequence in \(X\) is unconditionally summable (cf. [4, Theorem 4.3.12]). Also a sequence \((x_n)\) in \(X\) is unconditionally summable if and only if
\[
\lim_{l \to \infty} \sup_{x^* \in B_{X^*}} \sum_{n \geq l} |x^*(x_n)| = 0
\]
(cf. [1, Theorem 1.9]).
(a)⇒(b): Let \((x_n)_n \in \ell^p_w(X)\). By (a), \((x_n)_n\) is unconditionally summable. Hence by [1, Theorem 1.9], \(1\)-co\((x_n)_n\) is relatively compact.

(d)⇒(a): Let \((x_n)_n \in \ell^p_w(X)\). Define the map

\[S : c_0 \to X \text{ by } S(\alpha_n)_n = \sum_{n=1}^{\infty} \alpha_n x_n. \]

By (d), \(S\) is a weakly compact operator. We see that the adjoint operator \(S^* : X^* \to \ell_1\) is defined by

\[S^*x^* = (x^*(x_n))_n. \]

Since \(S^*\) is weakly compact, by the Schur property \(S^*\) is compact. Consequently, \((x_n)_n\) is unconditionally summable. \(\square\)

References

Ju Myung Kim

Department of Mathematics and Statistics
Sejong University
Seoul 05006, Korea

Email address: kjm21@sejong.ac.kr