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Ⅰ. 서론
1)

Finite fields GF(2m) has many applications in

areas such as coding theory and cryptography [1,

2]. However, the finite field size is relatively large

for use with elliptic curve cryptography (ECC) and

the efficient field arithmetic implementations affect
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the performance of ECC. Among them,

multiplication is an essential arithmetic. Addition is

relatively inexpensive, whereas multiplication is

more costly in terms of delay and circuit

complexity. Other operations such as division and

exponentiation can be performed by repetitive

multiplications. It is thus desirable to design GF(2m)

multiplier with low AT complexity, where AT
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complexity measures depend on two factors, chip

area (A) and computation time (T). Hardware

complexity is associated with a tradeoff between

area and time, instead of one of the two measures.

The area-time product complexity is the balanced

parameter for overall performance comparison of

various architectures rather than area and time

individually.

GF(2m) can be viewed as an m-dimensional vector

over GF(2) whose elements are 0 and 1. The

elements of GF(2m) are represented using a set of m

specific independent field elements called basis of

GF(2m). Several bases such as polynomial basis, dual

basis, normal basis, and redundant basis are

available. Among them, arithmetic in polynomial

basis is more regular, simple, and scalable in

hardware implementation. The performance of GF(2m)

multiplier depends on the irreducible polynomial

selected. Irreducible polynomials are classified into

generic polynomial, equally spaced polynomial, trinomial,

and pentonomial. GF(2m) multipliers based on trinomial

and pentanomial are more efficient, while

multipliers based on generic polynomial are

applicable for a wider range of applications.

Depending on the style of implementation various

GF(2m) multiplier can be developed. Based on the

input type, the structures can be bit-level or

digit-level. Digit-level architectures process a group

of bits called a digit at a time. These architectures

are complicated and facilitate the area-time trade-o

ff. Parallel architectures generate output in one

clock cycle at the cost of excessive hardware.

Among them, systolic array architectures have

advantages such as modularity, regularity,

concurrency and local interconnections. These

structures are more suitable for VLSI

implementation and provide high throughput while

their area and latency are usually very large.

Several systolic multipliers for GF(2m) have been

reported [3-11]. Lee et al. [3] and Chiou et al. [4]

proposed a semi-systolic multiplier with concurrent

error detection. Huang et al. [5] proposed a

semi-systolic multiplier to reduce the time and

space complexities. Kim and Kim [6] proposed an

area-efficient semi-systolic multiplier. Choi and Lee

[7] proposed the AT efficient parallel and serial

systolic unified multiplier/ squarer, which involves

little hardware overhead, based on the effective

LSB-first multiplication and LSB-first exponentiation.

Chiou et al. [8] proposed a semi- systolic multiplier

to reduce the time complexity. Lee and Kim [9]

proposed a semi-systolic multiplier using redundant

basis. Mathe and Boppana [10] proposed a sequential

polynomial basis multiplier for generic irreducible

polynomials with a latency of m clock cycles. This

architecture is designed to take one operand in

parallel and another operand serially during

computation. Ibrahim [11] proposed efficient parallel

and serial systolic structures for combined

multiplication and squaring over GF(2m). The

proposed structures have the advantage of

computing both modular multiplication and

squaring simultaneously for fast execution of

modular exponentiation. However, their high circuit

complexities and long delays are crucial limitations

in cryptographic applications. Thus, further research

on efficient multiplication with low space and time

complexities is required.

In this paper, we propose a low AT complexity

semi-systolic MMM multiplier over GF(2m).
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Applying the LSB-first scheme and two-level

parallel computation to MMM can achieve obvious

improvement in AT complexity compared to the

related semi-systolic multipliers. The proposed

multiplier can be used as a kernel circuit for

exponentiation/division and multiplication.

Ⅱ. Montgomery multiplication in GF (2m)
Let G(z) = ∑ 


 be the irreducible

polynomial generating the finite field GF(2m), where

 =  = 1 and  ∈ {0, 1} for j = 1 to m – 1.

Assuming x is a root of G(z), i.e., G(x) = 0, each

element in GF(2m) is represented as a polynomial of

degree less than m over GF(2), e.g., A ∈ GF(2m) is

represented A = 
, where  ∈ 

{0, 1} for j = 0 to m – 1. For simplicity, G(x) is

abbreviated as G. The addition is trivial because it

can be performed with bit-wise XORing two

operands; however, the multiplication is more

complicated because the intermediate partial

product needs further reduction by xm=∑ 
 

.
The MMM algorithm was originally proposed for

efficient integer modular multiplication [12]. Later,

it was shown that MMM is also applicable to

GF(2m) [13]. The idea is to transform input operands

to MMM residues, and then compute the

multiplication with these residues. Finally, the result

is converted back to the normal representation. Let

α and β be two elements of GF(2m) to be multiplied.

Instead of computing T ′ = αβ mod G, using an

ingenious representation of the residue class modulo

G, MMM of A (= αR mod G =∑ 
 

) and B

(= βR mod G =∑ 
 

) is given by T = ABR–

1 mod G = ∑ 
 

, where A (resp., B) is the
MMM residue of α (resp., β) and R is a special

fixed element of GF(2m) satisfying gcd(R, G) = 1.

The correct result T ′ is then obtained by executing

MMM using arguments T and 1, i.e., T′ = TR–1 mod

G = αβ mod G. Accordingly, MMM is only

beneficial if we compute several consecutive

multiplications in the exponentiation, owing to the

pre- and post-processing requirements. In this

paper, an efficient LSB-first semi-systolic

multiplication scheme is considered and we assume

m is odd because in practical applications it is more

significant than an even m. Efficient implementation

of ECC needs that m is odd, or more strongly m is

prime. For example, all the five binary fields

GF(2m), m = 163, 233, 283, 409, 571 suggested by

National Institute of Standards and Technology (NIST)

for ECC have the property that m = odd. In that

case we define R = x(m– 1) / 2 so that T = ABR–1 mod

G can be formulated as the sum of two

independently computed polynomials C and D,

where C = ∑ 
 

 and D = ∑ 
 

, as
follows:

T = ∑ 
 

 mod G

= ∑ 
 

 mod G (1)

+ ∑ 
 

 mod G (2)

We first consider (1) for i ∈ [1, (m + 1) / 2]. Let

A(i) = A(i – 1)x mod G, where A(i) = ∑ 
 

 

denotes the intermediate result at the ith iteration

and A(0) = A. Then, A(i) can be expressed in

expanded form as
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A(i) = ∑ 
 

  mod G

= ∑ 
 

  mod G

= 
 ∑ 

 
+∑ 


  (3)

It is clear that (3) is obtained by shifting the

coefficients of A(i – 1) to the left (i.e., the MSB

direction) by one and reducing the term 
 by

G. Therefore, we have the coefficients of A(i) as

follows:


 = 


, m ≥ j ≥ 1, (4)

where 
 = aj for m– 1 ≥ j ≥ 0 and 

 is set to


  for 1 ≤ i ≤ (m – 1) / 2. Now, (1) can be

represented as

  =   + 
, (5)

where  = ∑ 
 

  denotes the ith
intermediate result. Then,   can be rewritten as

  = ∑ 
 

 

= ∑ 
 



= ∑ 
 

 
 

= ∑ 
 

 

∑ 
 

 (6)

where C(0) = 0 and (6) is easily obtained by

multiplication and accumulation operations [7].

From (6), we have the coefficients of   as

follows:


 = 


 , m ≥ j ≥ 1, (7)

where 
 = 0 for m– 1 ≥ j ≥ 0, 

 = aj for m– 1 ≥

j ≥0, and 
 = 

  for 1 ≤ i ≤ (m– 1) / 2. After (m

+ 1) / 2 iterations, the result   is obtained.

Note that (4) and (7) are also independent and can thus

be computed in parallel, where the common term


  is used in both equations.

Next, we consider (2) for i ∈ [1, (m+ 1) / 2] and j

∈ [1, m]. In this case, let  =   mod G,

where  = ∑ 
 

  and  =A. For any
irreducible polynomial,  =  = 1, and we know

that x is a root of G. Using this fact, multiplying

both sides of G = ∑ 


 = 0 by x–1 and
rearranging the terms, we can obtain x–1 =

∑ 
 

. Using x–1, A(i) can be derived as

  = ∑ 
 

  mod G

= ∑ 
 

  mod G

= 
 ∑ 

 
 + ∑ 

 
  (8)

Equation (8) is computed by shifting   to

the LSB direction by one and reducing 
  by

G. From (8), the coefficients of   are obtained as


 = 

 
 , m ≥ j ≥ 1, (9)

where 
 =  for m– 1≥ j ≥ 0 and 

 is set to


  for 1 ≤ i ≤ (m– 1) / 2. Now, (2) can be expressed

as  =  + 
.   can be

written in expanded form

  = ∑ 
 

 

= ∑ 
 



= ∑ 
 

 
 

= ∑ 
 

 

∑ 
 

 (10)
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where   = 0. We obtain the coefficients of  

as


 = 


 , m ≥ j ≥ 1, (11)

where 
 = 0 for m– 1 ≥ j ≥ 0,  = 0, 

 =

 for m– 1 ≥ j ≥ 0, and 
 = 

  for 1 ≤ i ≤ (m
– 1) / 2. Note that both (9) and (11) can be

computed concurrently and involve a common term


 . Finally, to obtain the MMM product T as

output,   and   need to be added by

m 2-input XOR gates (XOR2).

Based on (4) and (7), the semi-systolic array for C

is shown in <Figure 1>. It consists of m× (m+ 1) /

2 M-cells of <Figure 2> and involves unidirectional

data flow, where m = 5. A system with

unidirectional data flow has advantages over a

system with contraflow in terms of chip

cascadability, fault tolerant design, and possible

integration [14]. One 1-bit latch (denoted by “•”) is

placed at each vertical link and diagonal link. The

basic cell at position (i, j) performs the logic

operations described in (4) and (7). The initial

positions and index points of each input are as

follows (1 ≤ i ≤ (m + 1) / 2). First,  enters index

[i, m] from the left side and flows in the direction

[0, –1]. Next,  (0 ≤ j ≤ m– 1) enters index [1, j + 1]

from the top and its computation result flows in the

direction [1, 0], where  = 0.

Then,  (1 ≤ j ≤ m) enters index [1, j] from the

top and flows in the direction [1, 0]. Next,  (0 ≤ j

≤ m– 1) enters [1, j + 1] from the top and its result

flows in the direction [1, 1]. Note that 
 

generated from 
  cell flows in the direction [0,

–1]. The output   emerges in parallel from

the bottom row of the array, where the output

order is normally maintained.

Each basic cell includes two 2-input AND gates

(AND2) and two XOR2, as shown in <Figure 2>,

where □⊕ and □∧ denote XOR2 and AND2,

respectively. 
 cell receives 

  as its input

from 
 ; 

 and  from 
 ; and 



and  from 
 . In <Figure 1>, the left

side input  is delayed by one clock cycle

relative to  for 1 ≤ i ≤ (m– 1) / 2. Note that the

structure and function of the semi-systolic array for

D based on (9) and (11) are the same as those

depicted in <Figure 1> and <Figure 2>; thus, they

are not considered in detail.

As stated earlier, because C and D have no data

dependency on each other and have identical and

<Figure 1> Array architecture for C

<Figure 2> Circuit of cell
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independent computation structures, we can

implement them in a pipelined fashion using a

single array. As a result, the proposed unified

semi-systolic multiplier is shown in <Figure 3>,

where all the inputs for D are staggered by one

clock cycle relative to all the inputs for C. <Figure

3(a)> consists of two kinds of cells; one generates

temporary results C and D using m × (m + 1) / 2

M-cells (<Figure 3(b)>), and the other adds them to

yield the correct answer T using m X-cells (<Figure

3(c)>), where each X cell includes one XOR2 and

one 1-bit latch. Each  (m – 1 ≥ j ≥ 0) is obtained

through m parallel additions of X cells, where one

delay element is required at each X cell to

synchronize the arrival of data at the X cell. Note

that   computed in (4) and (9) is of no use.

The latency of the proposed multiplier is (m + 7) /

2 clock cycles, and the propagation delay is the

total delay of one AND2 and one XOR2.

Ⅲ. Analysis and comparison
In this section, the area and time complexities of

the proposed systolic multiplier are compared with

that of similar multipliers available in the literature.

In <Table 1>, the analytical expressions for area and

time complexities of the proposed multiplier

together with that of available multipliers are

presented. The analytical comparisons presented in

<Table 1> can be better understood by evaluating

them for a specific value of field order along with a

specific technology-based area and time complexity

estimations of gates. The analytical expressions

presented in <Table 1> are evaluated for m = 571

using the area and time complexity estimations of

logic gates built from Samsung electronics company,

where m = 571 is one of the field sizes

recommended by NIST for ECC applications.

We obtained the area of the logic gates and their

delays from the Samsung STD 150 0.13m 1.2V

CMOS Standard Cell Library databook. The

following summarizes the time and area

requirements of the cells used in our analysis,

where T denotes the time (ns), A denotes the area

(transistor count), and Gaten denotes the n-input

logic cell gate, respectively [7]: TAND2: 0.094, AAND2:

6.68, TXOR2: 0.167, AXOR2: 12.00, TLATCH: 0.157, and

<Figure 3> (a) Proposed multiplier (b)  cell (c)  cell
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ALATCH: 16.00.

<Table 1> presents the analytical comparison of

latency, data flow, throughput, area complexity,

time complexity, AT complexity, and improvement

of the proposed multiplier with the multipliers

considered for comparison. The area required for

the proposed multiplier is computed in terms of

number of AND2 gates, XOR2 gates, XOR3 gates,

and latches. We also present the area complexity for

the other related systolic-type multipliers in a

similar way to compare with that of the proposed

multiplier. The expressions for area complexities of

the proposed multiplier are derived using <Figure

3>. <Fig. 3(a)> contains m(m+1)/2 M-cells and m

X-cells. Each M-cell contains two AND2, two XOR2,

and three 1-bit latches. Each X-cell includes one

XOR2 and two 1-bit latches. Hence, the proposed

multiplier architecture requires m2 + m AND2 gates,

m2 + 2m XOR2 gates, and 1.5m2 + 3.5m 1-bit latches.

Using AAND2, AXOR2, and ALATCH, the transistor-count

of the proposed multiplier is 42.7m2 + 86.7m.

<Table 1> presents the comparison of estimated

transistor -count, total delay, and AT of the

proposed multiplier. It is observed that the

proposed multiplier requires the least number of

transistors. It is clear from <Table 1> (% reduction

in #transistors row) that the proposed multiplier

achieves area efficiency of 50%, 50%, 53%, and 16%

when compared with multipliers [5, 6, 8, 9],

respectively.

The cell delay (i.e., critical path delay) and

latency of the proposed multiplier are 0.26 ns and

(m+7)/2 clock cycles, respectively and the total

delay is (cell delay) × (latency). <Table 1> (%

reduction in total delay row) shows that the

proposed multiplier achieves time efficiency of 49%,

<Table 1> Complexity comparison of semi-systolic multipliers
 Multipliers Huang et al.[5] Kim-Kim [6] Chiou et al.[8] Lee-Kim [9] Proposed

# cells m2 S:m(m–1)/2, V:m U:m(m–2), V:2m (m2+3m)/2+1 M:m(m+1)/2, X:m
Latency m+1 (m+3)/2 m+1 m/2+3 (m+7)/2

Data flow bidirectional bidirectional unidirectional unidirectional unidirectional

Throughput 1 1 1 1 1

Area complexity S U V M X
#AND2 2m2 2(m2–m) m2–2m 2m m2+3m+2 m2+m 0

#XOR2 2m2 m2–m 3(m2–2m) 8m m2+4m+3 m2+m m
#XOR3 0 (m2–m)/2 0 0 0 0 0

#Latch 3m2+m+1 3m2–2m–1 3(m2–2m) 6m 2m2+8m+6 1.5(m2+m) 2m
# transistors 85.4m2+16(m+1) 85.4m2+56m 90.7m2+24m 50.7m2+196.1m+145.4 42.7m2+86.7m
Time complexity

Cell delay 0.26 0.43 0.75 0.26 0.26

Total delay 0.26m+0.26 0.22m+0.66 0.75m+0.75 0.13m+0.78 0.13m+0.91

AT complexity
22.2m3+26.4m2

+8.3m+4.2
18.8m3+68.7m2

+37m
68.0m3+86.0m2

+18m
6.6m3+65.0m2

+171.8m+113.4
5.6m3+50.1m2

+78.9m
Improvement

Area
Time
AT

50%
49%
75%

50%
40%
70%

53%
82%
91%

16%
-0.17%
15%

-
-
-
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40%, 82%, and –0.17% when compared with

multipliers [5, 6, 8, 9], respectively. It is observed

that the multiplier [9] require less total delay

(-0.17%) and more hardware (16%) compared to the

proposed multiplier. However, the proposed

multiplier achieves best AT product compared to

the multipliers considered for comparison. It is

evident from <Table 1> (% reduction in AT

complexity row) that the proposed multiplier

achieves AT efficiency of 75%, 70%, 91%, and 15%

when compared with multipliers [5, 6, 8, 9],

respectively. Hence, it is clear from the estimation

values presented in <Table 1> that the proposed

multiplier is area and AT product efficient.

The proposed multiplier uses a two-dimensional

systolic array structure and requires O(m2) space

complexity and O(m) time complexity. The

proposed multiplier has the high-throughput, with

one multiplication per each clock cycle if many data

independent multiplications are applied in order

and concurrently executed in the systolic multiplier.

The high-throughput multiplier is urgently needed

because the elliptic curve digital signature algorithm

(ECDSA) requires many multiplications and

inversions, where the inversion can be computed by

iterative multiplications. A comparison of results

shows that our systolic multiplier is fully pipelined

to multiply operands with an extremely high-

throughput rate. The proposed high-throughput low

AT-complexity systolc multiplier is thus suitable for

computing digital signatures of ECDSA, which requires

mass multiplications.

Ⅳ. Conclusion
In this paper, we presented efficient

implementation of a polynomial-based systolic

multiplier to perform multiplication of two arbitrary

GF(2m) field elements. The proposed multiplier

exploits the characteristics of the MMM, LSB-first

scheme, and two-level parallel computation for

proper mapping into a low complexity systolic

structure. Detailed complexity analysis and

comparison have also been presented to show the

higher performance of the proposed multiplier over

the existing ones. Besides, the proposed multiplier

has the features of regularity, simplicity,

modularity, concurrency, and unidirectional data

flow, and can be used as a kernel circuit for

exponentiation/division and multiplication. Future

research focuses on the application of the proposed

systolic multiplier to obtain efficient cryptosystem

in various resource- constrained environment.
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