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{Abstract)
Many cryptographic and error control coding algorithms rely on finite field GF(2m)

arithmetic. Hardware implementation of these algorithms needs an efficient realization of
finite field arithmetic operations. Finite field multiplication is complicated among the basic
operations, and it is employed in field exponentiation and division operations. Various
algorithms and architectures are proposed in the literature for hardware implementation of
finite field multiplication to achieve a reduction in area and delay. In this paper, a low area
and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified
Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first
multiplication and two-level parallel computing scheme are considered to improve the cell
delay, latency, and area-time (AT) complexity. The proposed method has the features of
regularity, modularity, and unidirectional data flow and offers a considerable improvement
in AT complexity compared with related multipliers. The proposed multiplier can be used as
a kernel circuit for exponentiation/division and multiplication.
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[. A& the performance  of

ECC.  Among

Finite fields GH2") has many applications in
areas such as coding theory and cryptography [1,
2]. However, the finite field size is relatively large
for use with elliptic curve cryptography (ECC) and

the efficient field arithmetic implementations affect
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multiplication is an essential arithmetic. Addition is
relatively inexpensive, whereas multiplication is
more costly in terms of delay and circuit
complexity. Other operations such as division and
exponentiation can be performed by repetitive
multiplications. It is thus desirable to design GH2")
multiplier with low AT complexity, where AT
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complexity measures depend on two factors, chip
area (A) and computation time (T). Hardware
complexity is associated with a tradeoff between
area and time, instead of one of the two measures.
The area-time product complexity is the balanced
parameter for overall performance comparison of
various architectures rather than area and time
individually.

GH2") can be viewed as an mdimensional vector
over GH2) whose elements are 0 and 1. The
elements of GA2") are represented using a set of m
specific independent field elements called basis of
GH2"). Several bases such as polynomial basis, dual
basis, normal basis, and redundant basis are
available. Among them, arithmetic in polynomial
basis is more regular, simple, and scalable in
hardware implementation. The performance of GH2")
multiplier depends on the irreducible polynomial
selected. Irreducible polynomials are dassified into
generic polynomial, equally spaced polynomial, trinomial,
and pentonomial. GH2") multipliers based on trinomial
while
polynomial  are

and pentanomial are more efficient,

multipliers based on generic
applicable for a wider range of applications.
Depending on the style of implementation various
GH2™ multiplier can be developed. Based on the
input type, the structures can be bit-level or
digit-level. Digit-level architectures process a group
of bits called a digit at a time. These architectures
are complicated and facilitate the area-time trade-o
ff. Parallel architectures generate output in one
clock cycle at the cost of excessive hardware.
Among them, systolic array architectures have
modularity,  regularity,

interconnections. These

advantages such as

concurrency and local

VLSI
implementation and provide high throughput while

structures are  more  suitable  for
their area and latency are usually very large.
Several systolic multipliers for GH2") have been
reported [3-11]. Lee et al. [3] and Chiou et al. [4]
proposed a semi-systolic multiplier with concurrent
error detection. Huang et al. [5] proposed a
semi-systolic multiplier to reduce the time and
space complexities. Kim and Kim [6] proposed an
area-efficient semi-systolic multiplier. Choi and Lee
[7] proposed the AT efficient parallel and serial
systolic unified multiplier/ squarer, which involves
little hardware overhead, based on the effective
LSB-first multiplication and LSB-first exponentiation.
Chiou et al. [8] proposed a semi- systolic multiplier
to reduce the time complexity. Lee and Kim [9]
proposed a semi-systolic multiplier using redundant
basis. Mathe and Boppana [10] proposed a sequential
polynomial basis multiplier for generic irreducible
polynomials with a latency of m clock cycles. This
architecture is designed to take one operand in
parallel and another operand serially during
computation. Ibrahim [11] proposed efficient parallel

structures for combined

GH2™. The

advantage of

and serial systolic
multiplication and squaring over
proposed  structures have the
computing both modular multiplication and
squaring simultaneously for fast execution of
modular exponentiation. However, their high circuit
complexities and long delays are crucial limitations
in cryptographic applications. Thus, further research
on efficient multiplication with low space and time
complexities is required.

In this paper, we propose a low AT complexity
MMM  multiplier GH2".

semi-systolic over
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Applying the LSB-first scheme and two-level
parallel computation to MMM can achieve obvious
improvement in AT complexity compared to the
related semi-systolic multipliers. The proposed
multiplier can be used as a kernel circuit for

exponentiation/division and multiplication.

II. Montgomery multiplication in G/
(2")
Let 49 = X7 \g; 2/ " be the irreducible
polynomial generating the finite field GH2"), where
9n =9y =1land g; € {0, 1} for j =1 to m- 1L
Assuming x is a root of (3, ie, x) = 0, each
element in GA2") is represented as a polynomial of
degree less than m over GH2), eg, A € GH2") is
represented A = a,, 2"~ +...+a,z +a, where a; €
{01} for j = 0 to m— 1. For simplicity, () is
abbreviated as G The addition is trivial because it
can be performed with bit-wise XORing two
operands; however, the multiplication is more
intermediate

complicated because the

product needs further reduction by ¥ g, 27",
The MMM algorithm was originally proposed for

partial

efficient integer modular multiplication [12]. Later,
it was shown that MMM is also applicable to
GH2™) [13]. The idea is to transform input operands
to MMM then

multiplication with these residues. Finally, the result

residues, and compute the
is converted back to the normal representation. Let
a and B be two elements of GH2") to be multiplied.
Instead of computing 7’ = af mod G using an
ingenious representation of the residue class modulo
G MMM of A (= aRmod G=7_a; ,2' ") and B

(= BRmod G=)7" b, 2’ ") is given by T= ABR

Jj=1"5-

"mod G= Y t; ;2’"', where A (resp,, B is the
MMM residue of a (resp, £ and K is a special
fixed element of GH2") satisfying gcd(X G = 1.
The correct result 7" is then obtained by executing
MMM using arguments 7'and 1, ie, 7' = 7R 1 mod
G = af mod G Accordingly, MMM is only
beneficial if we

multiplications in the exponentiation, owing to the

compute several consecutive
pre- and post-processing requirements. In this
LSB-first

multiplication scheme is considered and we assume

paper, an efficient semi-systolic
mis odd because in practical applications it is more
significant than an even m Efficient implementation
of ECC needs that mis odd, or more strongly mis
prime. For example, all the five binary fields
GH2"), m = 163, 233, 283, 409, 571 suggested by
National Institute of Standards and Technology (NIST)
for ECC have the property that m = odd. In that
case we define R = A /% 5o that 7= ABR" mod
G can be formulated as the

independently computed polynomials C and D)

sum of two

where C'= Z:;'n:lcjflxr1 and D= Z;’L:1dj71$j71, as
follows:
7= ( ]11 j,lxjfl)Axf(m’])/? mod G

= " b Az mod G (1)

+ Zjlz(m*l)/Ql)_jflAz(2j77717])/2 mOd G (2)

We first consider (1) for 7 € [1, (m+ 1) / 2]. Let
A" = A" Ux mod G where 47 = =" af 27!
denotes the intermediate result at the #h iteration
and A7 =

expanded form as

A Then, A? can be expressed in
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A = ( 7m 1a§7 11)107 1)10 mod G
=>" " Y2 mod G

j=1%-
—_ (i—1) =1 mfl (z 1),
m—1 j:19]'—1~L +Zj:1 j—1 T ©)

= q,

It is clear that (3) is obtained by shifting the
D to the left (e, the MSB

direction) by one and reducing the term a(’ l) m by

coefficients of A"~

G Therefore, we have the coefficients of A

follows:

0 = =1 4 gD > i1 4
aj a‘j*l (melgj/ m = ] = 4 ( )
where a” =g for m~1= ;>0 and af’ is set to

al~V for 1 <7< (m-1) /2 Now, (1) can be

represented as

oW = o1 4 D +2i—3)/24 (iil)/ ©)
where €= X 7 277" denotes the th

intermediate result. Then, C'”) can be rewritten as

€ = T D
_ i j—1
- 2;:1 (m+2j— 3)/2‘435]

- m C(z 1)1,1 1+bm+2i73)/2A$1‘71

j=1%5—1
- ]m 1657 11)1,] 1
+bm+21 3/22J IJ )l] ! (6)
where ” =0 and (6) is easily obtained by

multiplication and accumulation operations [7].

From (6), we have the coefficients of C as

follows:
Cj-jll = CE.":11> +b(7r1+21}*3)/2a§i*711)’ m=j=1, )
wherec Oform—1>]>0 a(o)—aform 1=
720, and af’ = "~V for 1 <7< (m-1) / 2. After (m

+1) / 2 iterations, the result ¢ *V/2 is obtained.
Note that (4) and (7) are also independent and can thus
be computed in parallel, where the common term
o)
Next, we consider (2) for 7€ [1, (m+1) /2] and
€1, m. In this case, let AY= 4"V " mod G
and 4”=A For any

=g, =1, and we know

is used in both equations.

where A= J’”laﬁ)laﬂ !
irreducible polynomial, g,
that x is a root of G Using this fact, multiplying
both sides of G'=

rearranging the terms, we can obtain x' =

Mg, @ =0 by x" and

m

Liga’ " Using x', A can be derived as

AV = (= V2 e mod G
= ;nla57 11>x7 2mod G

= -1 i1 m 1), j=2
- Q j= 1gj + Z] 2 j 1 (8)

Equation (8) is computed by shifting 47!
the LSB direction by one and reducmg al Va~ ! by
G From (8), the coefficients of A are obtained as

(@) = -1 (-1 ;
ani*j*l - nLl J +a(L gmfj/ m = ] 2 1/ (9)

where a§ 0)

i~V for 1<7<(m-1) /2 Now, (2) can be expressed
as D(i)': D(i71)+ b(m,ZiJrl)/QA (iil). D(Z) can be

written in expanded form

=a; for m=1>;>0and a?_, is set to

= 3 ) i
= Z; 106 — 2j+1/2AfL'j71
= Zm dl 1] 27]7 +bm 21+1)/2A$
= Zj’lld(t D51

+b(m—2z+1)/227 1“5L 11)33]'71 (10)
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where D' =0. We obtain the coefficients of D
as
d(i) = d(l )

'm=—j 'm— ;+bm 2L+1)/Zam ]>/ m>] = 1 (11)

where d((’) =0 for m—1 >j2 0, b 1)2=0, a;o) =
a; for m=1>;7>0,and i) | =ai " for 1 <7< (m
- 1) / 2. Note that both (9 and (11) can be
computed concurrently and involve a common term

ali~ ;) Finally, to obtain the MMM product 7 as
output, C m+1/2 and D V/2 need to be added by
m 2-input XOR gates (XORy).

Based on (4) and (7), the semi-systolic array for C
is shown in <Figure 1>. It consists of mx (m+1)/
2 M-cells of <Figure 2> and involves unidirectional
5 A
unidirectional data flow has advantages over a
chip
cascadability, fault tolerant design, and possible
integration [14]. One 1-bit latch (denoted by “*”) is

placed at each vertical link and diagonal link. The

data flow, where m = system with

system with contraflow in terms of

basic cell at position (7 ;) performs the logic
operations described in (4) and (7). The initial
positions and index points of each input are as
follows (1 <7< (m+1)/2). First, b, ,, enters index
[4 m from the left side and flows in the direction
[0, -1]. Next, ¢; (0 =/ = m—1) enters index [1, /+1]
from the top and its computation result flows in the
direction [1, 0], where ¢;=0.

Then, g; (1 =/ = m) enters index [1, ;] from the
top and flows in the direction [1, 0]. Next, a; 0=/
< m—1) enters [1, j + 1] from the top and its result
Note that o'~V

m—1

flows in the direction [1, 1].
generated from A7~V

m—1

cell flows in the direction [0,

-1]. The output C'" """ emerges in parallel from
the bottom row of the array, where the output

order is normally maintained.
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<Figure 1> Array architecture for C
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<Figure 2> Circuit of ]V[j("')cell

Each basic cell includes two 2-input AND gates
(AND;) and two XOR,, as shown in <Figure 2>,

where and denote XOR, and AND,,

respectively. M“ cell receives agl -
from A7} c(f Y

' and g, from A[(Z Y, and of"Y
and b, .53/ from M{,. In <Figure 1>, the left

as its input

side input b,,, is delayed by one clock cycle
relative to b;,, for 1 <7< (m-1) /2. Note that the
structure and function of the semi-systolic array for
D based on (9) and (11) are the same as those
depicted in <Figure 1> and <Figure 2>; thus, they
are not considered in detail.

As stated earlier, because C and D have no data

dependency on each other and have identical and
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independent computation structures, we can
implement them in a pipelined fashion using a
single array. As a result, the proposed unified
semi-systolic multiplier is shown in <Figure 3>,
where all the inputs for D are staggered by one
clock cycle relative to all the inputs for C <Figure
3(a)> consists of two kinds of cells; one generates
temporary results C and D using mx (m+1) /2
M-cells (<Figure 3(b)>), and the other adds them to
yield the correct answer 7" using m X-cells (<Figure
3(c)>), where each X cell includes one XOR, and
one 1-bit latch. Each t; (m—1 = ;= 0) is obtained
through m parallel additions of X cells, where one
delay element is required at each X cell to
synchronize the arrival of data at the X cell. Note
that 4"V computed in (4) and (9) is of no use.
The latency of the proposed multiplier is (m+ 7) /
2 clock cycles, and the propagation delay is the

total delay of one AND, and one XOR,.

[I. Analysis and comparison

In this section, the area and time complexities of

0 Yo ay 091 ulog aZOga a30g4a4
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<Figure 3> (a) Proposed multiplier

the proposed systolic multiplier are compared with
that of similar multipliers available in the literature.
In <Table 1>, the analytical expressions for area and
time complexities of the proposed multiplier
together with that of available multipliers are
presented. The analytical comparisons presented in
<Table 1> can be better understood by evaluating
them for a specific value of field order along with a
specific technology-based area and time complexity
estimations of gates. The analytical expressions
presented in <Table 1> are evaluated for m = 571
using the area and time complexity estimations of
logic gates built from Samsung electronics company,
where m = 571 is one of the field sizes
recommended by NIST for ECC applications.

We obtained the area of the logic gates and their
delays from the Samsung STD 150 0.13um 1.2V
CMOS Standard Cell Library databook. The
following summarizes the time and area
requirements of the cells used in our analysis,
where 7 denotes the time (ns), A denotes the area
(transistor count), and Gatenn denotes the rinput
logic cell gate, respectively [7]: Zanpz: 0.094, Aanpo:

668, ];(ORzi 0167, AXORzl 1200, T]:AT(HZ 0157, and

40D P
i mej mej
- o ( 1 2
T - e
(m+1)/2
ol gD G-1
g )
bm—2L+1bm+'ZL—3
T IAF AN *
(D
M | D AN
AV ALY
0} [0}
Gt - Xmejor o1 Xmejer
a(l) C(L)

71

(b) M cell () X; cell
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Aatar: 16.00.

<Table 1> presents the analytical comparison of
latency, data flow, throughput, area complexity,
time complexity, AT complexity, and improvement
of the proposed multiplier with the multipliers
considered for comparison. The area required for
the proposed multiplier is computed in terms of
number of AND, gates, XOR, gates, XORs gates,
and latches. We also present the area complexity for
the other related systolic-type multipliers in a
similar way to compare with that of the proposed
multiplier. The expressions for area complexities of
the proposed multiplier are derived using <Figure
3>. <Fig. 3(a)> contains m{m*1)/2 M-cells and m
X-cells. Each M-cell contains two AND,, two XOR,,
and three 1-bit latches. Each X-cell includes one
XOR; and two 1-bit latches. Hence, the proposed
multiplier architecture requires n7 + m AND, gates,

nt + 2mXOR, gates, and 1.50f + 35m1-bit latches.
Using Aanpy Axore, and Aiarcy, the transistor-count
of the proposed multiplier is 42.7n7 + 86.7m

<Table 1> presents the comparison of estimated
transistor -count, total delay, and AT of the
proposed multiplier. It is observed that the
proposed multiplier requires the least number of
transistors. It is clear from <Table 1> (% reduction
in #transistors row) that the proposed multiplier
achieves area efficiency of 50%, 50%, 53%, and 16%
when compared with multipliers [5, 6, 8§, 9],
respectively.

The cell delay (ie, critical path delay) and
latency of the proposed multiplier are 0.26 ns and
(m+7)/2 clock cycles, respectively and the total
delay is (cell delay) x (latency). <Table 1> (%
reduction in total delay row) shows that the

proposed multiplier achieves time efficiency of 49%,

<Table 1> Complexity comparison of semi—systolic multipliers

Multipliers Huang et al.[5] Kim—Kim [6] Chiou et al.[8] Lee—Kim [9] Proposed
# cells nt Smnrl)/2, Vim Un{m?2), V2m (n#+3m)/2+1 Mn(n#1)/2, Xm
Latency nrl (m3)/2 m+l m2+3 (#7)/2
Data flow bidirectional bidirectional unidirectional unidirectional unidirectional
Throughput 1 1 1 1 1
Area complexity S |4 M X
#AND, 20t 2(nmt-m) n-2m 2m nH+3mi2 nt+m 0
#XOR, 2nt nt-m 3(n?-2m) 8m nt+dm3 nt+m m
#XORs 0 (nF-m)/2 0 0 0 0
#Latch 3nt+m+l 3ni-2mr1 3(nt-2m) 6m 2nt+8m+6 1.5(nt+m) 2m
# transistors 85.4n7+16(m+1) 85.4nt+56m 90.7n#+24m 50.7n7+196.1m+145.4 42.7n7+86.7m
Time complexity
Cell delay 0.26 043 0.75 0.26 0.26
Total delay 0.2611+0.26 0.22m+0.66 0.75m+0.75 0.13m+0.78 0.13m+0.91
AT complexity 222m+264nt 18.8ni+68.7nt 68.0m1+86.0n7 6.6m1+65.0n7 5.6m1+50.1n7
+8.3m+4.2 +37m +18m +171.8m+113 4 +789m
Improvement
Area 50% 50% 53% 16%
Time 49% 40% 82% 0.17%
AT 75% 70% 91% 15%
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40%, 82%, and —0.17% when compared with
multipliers [5, 6, 8, 9], respectively. It is observed
that the multiplier [9] require less total delay
(-0.17%) and more hardware (16%) compared to the
proposed multiplier. However, the proposed
multiplier achieves best AT product compared to
the multipliers considered for comparison. It is
evident from <Table 1> (% reduction in AT
complexity row) that the proposed multiplier
achieves AT efficiency of 75%, 70%, 91%, and 15%
when compared with multipliers [5, 6, 8, 9],
respectively. Hence, it is clear from the estimation
values presented in <Table 1> that the proposed
multiplier is area and AT product efficient.

The proposed multiplier uses a two-dimensional
systolic array structure and requires Qnf) space
and Jm time
proposed multiplier has the high-throughput, with

complexity complexity. The
one multiplication per each clock cycle if many data
independent multiplications are applied in order
and concurrently executed in the systolic multiplier.
The high-throughput multiplier is urgently needed
because the elliptic curve digital signature algorithm
(ECDSA)

inversions, where the inversion can be computed by

requires many multiplications and
iterative multiplications. A comparison of results
shows that our systolic multiplier is fully pipelined
to multiply operands with an extremely high-
throughput rate. The proposed high-throughput low
AT-complexity systolc multiplier is thus suitable for
computing digital signatures of ECDSA, which requires
mass multiplications.

IV. Conclusion

In this

implementation of a polynomial-based systolic

paper, we presented efficient
multiplier to perform multiplication of two arbitrary
GH2") field elements. The proposed multiplier
exploits the characteristics of the MMM, LSB-first
scheme, and two-level parallel computation for
proper mapping into a low complexity systolic
Detailed

comparison have also been presented to show the

structure. complexity analysis and
higher performance of the proposed multiplier over
the existing ones. Besides, the proposed multiplier
has the features of regularity,

modularity, concurrency, and unidirectional data

simplicity,

flow, and can be used as a kernel circuit for
exponentiation/division and multiplication. Future
research focuses on the application of the proposed
systolic multiplier to obtain efficient cryptosystem

in various resource- constrained environment.
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