DOI QR코드

DOI QR Code

A Study on the Hydraulic Characteristics of Rashig Super-Ring Random Packing in a Counter-Current Packed Tower

역류식 충전탑에서 Raschig Super-ring Random Packing의 수력학적 특성에 대한 연구

  • 강성진 ((주)엔티아이이엔씨) ;
  • 임동하 (한국생산기술연구원 친환경재료공정연구그룹)
  • Received : 2020.06.08
  • Accepted : 2020.06.23
  • Published : 2020.06.30

Abstract

In recent years, packed column has been widely used in separation processes, such as absorption, desorption, distillation, and extraction, in the petrochemical, fine chemistry, and environmental industries. Packed column is used as a contacting facility for gas-liquid and liquid-liquid systems filled with random packed materials in the column. Packed column has various advantages such as low pressure drop, economical efficiency, thermally sensitive liquids, easy repairing restoration, and noxious gas treatment. The performance of a packed column is highly dependent on the maintenance of good gas and liquid distribution throughout a packed bed; thus, this is an important consideration in a design of packed column. In this study, hydraulic pressure drop, hold-up as a function of liquid load, and mass transfer in the air, air/water, and air-NH3/water systems were studied to find the geometrical characteristic for raschig super-ring experiment dry pressure drop. Based on the results, design factors and operating conditions to handle noxious gases were obtained. The dry pressure drop of the random packing raschig super-ring was linearly increased as a function of gas capacity factor with various liquid loads in the Air/Water system. This result is lower than that of 35 mm Pall-ring, which is most commonly used in the industrial field. Also, it can be found that the hydraulic pressure drop of raschig super-ring is consistently increased by gas capacity factor with various liquid loads. When gas capacity factor with various liquid loads is increased from 1.855 to 2.323 kg-1/2 m-1/2 S-1, hydraulic pressure drop increases around 17%. Finally, the liquid hold-up related to packing volume, which is a parameter of specific liquid load depending on gas capacity factor, shows consistent increase by around 3.84 kg-1/2 m-1/2 S-1 of the gas capacity factor. However, liquid hold-up significantly increases above it.

오늘날 석유화학, 정밀화학, 대기오염 방지산업 등에서 증류, 흡수, 추출, 탈거 등 물질분리 단위공정으로 주로 충전탑을 사용해 왔다. 충전탑은 가스-액체, 가스-가스 시스템에서의 물질들과의 접촉에 의해 운전되어 진다. 이러한 충전탑은 낮은 압력손실, 경제적 효율, 고온성 액체물질 적용, 유지보수 용이, 유해가스 처리 등의 운영에서 장점들을 가진다. 충전탑의 성능은 충진물을 통해 가스와 액체를 고르게 분산함으로써 우수한 성능을 보이며, 이는 충전탑 설계에 있어 중요한 인자로 고려되어진다. 본 실험에서는 충진물에 대한 액체부하 및 가스용량인자에 따른 건조압력손실, 수력학적 압력손실, 액체함량 변화에 대한 기하학적 특성에 대하여 연구하였다. 결과로부터 설계인자와 운전조건 등의 유해가스 처리에 필요한 인자를 도출하였다. 임의 충진물인 raschig super-ring에 대한 건조압력손실을 측정한 결과, 가스용량인자가 증가할수록 일정하게 선형적으로 증가하였고, 가스용량인자가 0.630 ~ 3.448 kg-1/2 m-1/2 S-1에서 건조압력손실은 1.892 ~ 47.312 mmH2O m-1로 기존 산업현장에서 보편적으로 사용되는 35 mm pall-ring보다도 낮은 압력손실을 보였다. 그리고 raschig super-ring에 대한 수력학적 압력손실을 측정한 결과, 고유 액체부하에 대하여 가스용량인자가 증가할수록 압력손실도 함께 증가함을 확인하였고, 액체부하 변화에 따른 가스용량인자가 1.855 ~ 2.323 kg-1/2 m-1/2 S-1으로 20% 증가할 때, 압력손실은 약 17% 증가하는 것으로 나타났다. 마지막으로, 충진물 체적에 관한 액체함량은 가스용량인자에 의존된 액체부하 매개변수로서 액체부하 변화에 따른 가스용량인자 약 3.84 kg-1/2 m-1/2 S-1까지는 거의 일정한 액체함량을 보였으나, 그 이상에서는 급격하게 증가하였다.

Keywords

References

  1. Hall, S. M., Rules of Thumb for Chemical Engineers, 6th ed., Elsevier, (2018).
  2. Ludwig, E. E., Applied Process Design for Chemical & Petrochemical Plants, 3rd ed., Gulf Professional Publishing, (2001).
  3. Kang, S. J., Park, C. K., Kil, S. J., and Lee, K. H., "High Performance Count-Current Flow in Packed Tower Design," Appl. Chem., 17, 21-24 (2013).
  4. Billet, R., Packed Towers in Processing and Environment Technology, Wiley-VCH, (1995).
  5. Furter, W. F., and Newstead, W. T., "Comparative Performance of Packings for Gas-Liquid Contacting Columns," Can. J. Chem. Eng., 51, 326-331 (1973). https://doi.org/10.1002/cjce.5450510310
  6. MaCabe, W. L., Smith, J. C., and Harriott, P., Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, (2018).
  7. Bolles, W. L., and Fair, J. R., Performance and design of packed distillation columns, 3nd Int. Symp. on Distillation, London, (1979).
  8. Kang, S. J., Park, C. K., Kil, S. J., Lee, K. H., and Kim, J. H., "The Study of Absorption and Hydraulic Character in Packing Column," Theories and Applications of chem. Eng., 19, 308-311 (2013).
  9. Couper, J. R., Penney, W. R., Fair, J. R., and Walas, S. M., Chemical Process Equipment: Selection and Design, 2nd ed.,, Elsvier (2005).
  10. Mackowiak, J., Fluid Dynamics of Packed Columns: Principles of the Fluid Dynamic Design of Columns for Gas/Liquid and Liquid/Liquid Systems, Springer (2009)
  11. Billet, R., Packed column analysis and design, Ruhr-University bochum Department for Thermal Separation Processes, cop. (1989).
  12. Billet, R., and Schultes, M., "Modelling of Pressure Drop in Packed Column," Chem. Eng. Technol., 14, 89-95 (1991). https://doi.org/10.1002/ceat.270140203
  13. Kim, T. S., "The Study of Absorption and Hydraulic Character in Packing Tower," Korean J. Sanitation, 15, 4-13 (2000).