Measuring Inter-industry Convergence using Structural Holes Theory: Focusing on ICT Industries

구조적 공백 이론을 이용한 산업간 융합 측정 연구: ICT 산업을 중심으로

  • Received : 2020.03.18
  • Accepted : 2020.04.10
  • Published : 2020.06.30


This study seeks to measure inter-industry convergence systematically and quantitatively using structural holes theory. ICT industries were classified into ICT manufacturing and ICT service then efficiency and constraints were calculated using input-output tables. The results of the study revealed both ICT industries have very high information and control benefits in the process of industrial convergence, proving to be key industries with competitive advantage. Further implications were presented based on comparative analysis between ICT manufacturing and service and trend analysis over the past 15 years.

ICT 기반 산업 융합의 중요성이 대두됨에 따라 본 연구에서는 이를 체계적인 방법으로 정량화하여 측정하고자 한다. 구체적으로는 ICT 산업을 ICT 제조업과 ICT 서비스업으로 분류한 후, 구조적 공백 이론 관점에서 산업연관표의 데이터를 분석하여 산업 간 융합 네트워크 구조에서의 ICT 산업의 효율성과 제약성을 확인하였다. 분석 결과 ICT 제조업과 ICT 서비스업 모두 정보 효익과 통제 효익이 매우 높은 것으로 드러나, 산업 간 융합 과정에서 경쟁 우위의 위치에 있는 핵심 산업인 것으로 입증되었다. 또한, ICT 제조업과 ICT 서비스업의 직접적인 비교와 지난 15년간의 추세 분석 결과를 토대로 추가적인 시사점을 제시하였다.


  1. Burt, R. S. (1992). Structural Holes: The Social Structure of Competition, Cambridge, MA, Harvard University Press.
  2. Burt, R. S. (2000). The Network Structure of Social Capital, Research in Organizational Behavior, 22, 345-423
  3. Burt, R. S., Hogarth, R. M., and Michaud, C. (2000). The Social Capital of French and American Managers, Organization Science, 11(2), 123-147.
  4. Burt, R. S. (2004). Structural Holes and Good Ideas, American Journal of Sociology, 110(2), 349-399.
  5. Burt, R. S. (2007). Secondhand Brokerage: Evidence on the Importance of Local Structure for Managers, Bankers, and Analysts, Academy of Management Journal, 50(1), 119-148. doi:10.5465/AMJ.2007.24162082
  6. Chang, P.-L. and Shih, H.-Y. (2005). Comparing Patterns of Intersectoral Innovation Diffusion in Taiwan and China: A Network Analysis, Technovation, 25(2), 155-169. doi:10.1016/S0166-4972(03)00077-4
  7. Garcia-Muniz, A. S., and Vicente, M. R. (2014). ICT Technologies in Europe: A Study of Technological Diffusion and Economic Growth under Network Theory, Telecommunications Policy, 38(4), 360-370. doi:
  8. Hwang, S.-H. (2017). An Analysis of Convergence Phenomenon using Industrial Convergence Coefficient, Journal of the Korea Contents Association, 17(3), 666-674.
  9. Im J.-W., and Lee, S.-G. (2018). A Competitive Study on the Linkage Effects of Primary Industry among Korea, China and Japan, Journal of the Korea Industrial Information Systems Research, 23(5), 103-118.
  10. Jeon, S., Kim, S. T., and Lee, D. H. (2011). Web 2.0 Business Models and Value Creation, International Journal of Information and Decision Sciences, 3(1), 70-84.
  11. Kim, S.-H., and Kim, J.-H. (2009). A IT Support Policy for R&D Competence: Steel Industry Case, Journal of the Korea Industrial Information Systems Research, 14(4), 143-152.
  12. Lee, C., and Kim, S. (2019). An Empirical Study on the Quality Attributes of Museum Service by ICT: Comparisons of South Korea and Austria, Journal of the Korea Industrial Information Systems Research, 24(1), 65-79.
  13. Lee, D. H., Hong, G. Y., and Lee, S.-G. (2019). The Relationship among Competitive Advantage, Catch-Up, and Linkage Effects: A Comparative Study on ICT Industry between South Korea and India, Service Business, 13(3), 603-624. doi:10.1007/s11628-019-00397-2
  14. Lee, D. H., Lee, H., and Kim, J. (2016). A Trend Analysis of the Knowledge Management Research using Graph Theory and Network Model, Knowledge Management Research, 17(1), 1-16.
  15. Li, Y. F., Lee, S. G., and Kong, M. (2019). The Industrial Impact and Competitive Advantage of China's ICT Industry, Service Business, 13(1), 101-127. doi:10.1007/s11628-018-0368-7
  16. Muniz, A. S. G., Raya, A. M., and Carvajal, C. R. (2010). Spanish and European Innovation Diffusion: A Structural Hole Approach in the Input-Output Field, Annals of Regional Science, 44(1), 147-165. doi:10.1007/s00168-008-0247-6
  17. Shin, Y. J., and Lee, D. H. (2016). The Role of the Digital Culture Contents Industry in the Knowledge Economy: An Input-output Analysis, Knowledge Management Research, 17(1), 73-89.
  18. Soda, G., Usai, A., and Zaheer, A. (2004). Network memory: The Influence of Past and Current Networks on Performance, Academy of Management Journal, 47(6), 893-906. doi:10.5465/20159629
  19. Soofi, A. S., and Ghazinoory, S. (2011). The Network of the Iranian Techno-Economic System, Technological Forecasting and Social Change, 78(4), 591-609. doi:
  20. Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., and de Vries, G. J. (2015). An Illustrated User Guide to the World Input-Output Database: The Case of Global Automotive Production, Review of International Economics, 23(3), 575-605. doi:10.1111/roie.12178
  21. Zaheer, A., and Soda, G. (2009). Network Evolution: The Origins of Structural Holes, Administrative Science Quarterly, 54(1), 1-31. doi:10.2189/asqu.2009.54.1.1