DOI QR코드

DOI QR Code

The Effects of Edible Coating and Hurdle-Technology on Quality Maintenance and Shelf-Life Extension of Seafood

식용 코팅 및 허들기술이 수산물의 품질 유지와 저장성 연장에 미치는 영향

  • Baek, Ji Hye (Department of Food and Nutrition, Kookmin University) ;
  • Lee, So-Young (Department of Food and Nutrition, Kookmin University) ;
  • Oh, Se-Wook (Department of Food and Nutrition, Kookmin University)
  • 백지혜 (국민대학교 식품영양학과) ;
  • 이소영 (국민대학교 식품영양학과) ;
  • 오세욱 (국민대학교 식품영양학과)
  • Received : 2020.03.31
  • Accepted : 2020.05.15
  • Published : 2020.06.30

Abstract

Foodborne diseases occur frequently and have various being related to the intake of contaminated foods. Seafood products are susceptible to contamination due to higher water content and microorganisms, which combine to give them a short shelf-life. Various approaches have been applied to overcome this problem. Edible coatings that are also biodegradable and biocompatible have been discussed as one of the applicable solutions. These coatings can actually help to maintain seafood quality by inhibiting the growth of microorganisms and delaying the loss of moisture. This paper presents the effects of various natural bio-polymers, antimicrobial substances and physical sterilization techniques such as gamma irradiation, ultraviolet (UV) sterilization, and light-emitting diode (LED) sterilization on seafood coatings.

본 논문은 수산물에 사용되는 식용 코팅의 다양한 천연성분에 대한 소재 및 특성에 대하여 조사하였으며, 화학적 항균 물질 및 항산화제와 물리적 살균 기술을 병합한 허들 기술(hurdle technology)에 대하여 서술하였다. 다양한 원인으로 인한 식중독 사고가 빈번히 발생하고 있으며 주된 원인은 오염된 식품의 섭취와 관련이 있다. 특히, 식품 중에서도 수산물은 수분함량이 많고 미생물에 오염되기 쉽기 때문에 저장 기한이 짧다. 이에 대한 해결방안으로 여러 가지 대안들이 적용되고 있는데, 가식성을 가지고 독성이 없는 장점을 가진 식용 코팅이 주목을 받고 있다. 식용 코팅은 미생물의 성장을 억제하고 수분 손실을 지연시킴으로써 수산물의 품질을 유지할 수가 있다. 또한 항균 물질 및 항산화제를 첨가하거나 물리적인 살균 기술과도 병합할 수 있다. 하지만 식용 코팅과의 병합 처리 기술이 소수 보고되고 있어 다양한 허들 기술에 대한 연구가 필요하다.

Keywords

References

  1. Kwun, J.W., Lee, C.H., Trends of recent food-borne disease outbreaks in Korea. J. Korean Med. Assoc., 50, 573-581 (2007). https://doi.org/10.5124/jkma.2007.50.7.573
  2. Oliveira, M., Usall, J., Vinas, I., Solsona, C., Abadias, M., Transfer of Listeria innocua from contaminated compost and irrigation water to lettuce leaves. Int. J. Food Microbiol., 28, 590-596 (2011). https://doi.org/10.1016/j.fm.2010.11.004
  3. Rahman, S. M.E., Ding, T., Oh, D.H., Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control, 21, 1383-1387 (2010). https://doi.org/10.1016/j.foodcont.2010.03.011
  4. Back, K.H., Ha, J.W., Kang, D.H., Effect of hydrogen peroxide vapor treatment for inactivating Salmonella Typhimurium, Escherichia coli O157: H7 and Listeria monocytogenes on organic fresh lettuce. Food Control, 44, 78-85 (2014). https://doi.org/10.1016/j.foodcont.2014.03.046
  5. Sagong, H.G., Lee, S.Y., Chang, P.S., Heu, S., Ryu, S., Choi, Y.J., Kang, D.H., Combined effect of ultrasound and organic acids to reduce Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int. J. Food Microbiol., 145, 287-292 (2011). https://doi.org/10.1016/j.ijfoodmicro.2011.01.010
  6. Park, S.K., Kim, M.J., Effects of changing age structure of population on seafood consumption. Master's Thesis, University of Pukyong, Busan, Korea (2008).
  7. Maqsood, S., Benjakul, S., Synergistic effect of tannic acid and modified atmospheric packaging on the prevention of lipid oxidation and quality losses of refrigerated striped catfish slices. Food Chem., 121, 29-38 (2010). https://doi.org/10.1016/j.foodchem.2009.11.086
  8. Rodriguez-Turienzo, L., Cobos, A., Moreno, V., Caride, A., Vieites, J.M., Diaz, O., Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chem., 128, 187-194 (2011). https://doi.org/10.1016/j.foodchem.2011.03.026
  9. Motalebi, A.A., Seyfzadeh, M., Effects of whey protein edible coating on bacterial, chemical and sensory characteristics of frozen common Kilka (Clupeonellia delitula). Iran J. Fish Sci., 11, 132-144 (2012).
  10. Barnett, H.J., Stone, F.E., Roberts, G.C., Hunter, P.J., Nelson, R.W., Kwok, J., A study in the use of a high concentration of $CO_2$ in a modified atmosphere to preserve fresh Salmon. Mar. Fish. Rev., 44, 7-11 (1982).
  11. Josewin, S.W., Ghate, V., Kim, M.J., Yuk, H.G., Antibacterial effect of 460 nm light-emitting diode in combination with riboflavin against Listeria monocytogenes on smoked salmon. Food Control, 84, 354-361 (2018). https://doi.org/10.1016/j.foodcont.2017.08.017
  12. Raghav, P.K., Agarwal, N., Saini, M., Edible coating of fruits and vegetables: A review. Int. J. Sci. Res. Mod. Educ., 1, 188-204 (2016).
  13. Concha-Meyer, A., Schobitz, R., Brito, C., Fuentes, R., Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control, 22(3-4), 485-489 (2011). https://doi.org/10.1016/j.foodcont.2010.09.032
  14. Kong, K.J.W., Alcicek, Z., Balaban, M.O., Effects of dry brining, liquid smoking and high-pressure treatment on the physical properties of aquacultured King salmon (Oncorhynchus tshawytscha) during refrigerated storage. J. Agric. Food Sci., 95, 708-714 (2015). https://doi.org/10.1002/jsfa.6754
  15. Ahmad, M., Benjakul, S., Sumpavapol, P., Nirmal, N.P., Quality changes of sea bass slices wrapped with gelatin film incorporated with lemongrass essential oil. Int. J. Food Microbiol., 155, 171-178 (2012). https://doi.org/10.1016/j.ijfoodmicro.2012.01.027
  16. Dehghani, S., Hosseini, S.V., Regenstein, J.M., Edible films and coatings in seafood preservation: A review. Food Chem., 240, 505-513 (2018). https://doi.org/10.1016/j.foodchem.2017.07.034
  17. Siripatrawan, U., Harte, B.R., Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll., 24, 770-775 (2010). https://doi.org/10.1016/j.foodhyd.2010.04.003
  18. Ouattara, B., Sabato, S.F., Lacroix, M., Combined effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaeus spp.). Int. J. Food Microbiol., 68, 1-9 (2001). https://doi.org/10.1016/S0168-1605(01)00436-6
  19. Kim, J.H., Hong, W.S., Oh, S.W., Effect of layer-by-layer antimicrobial edible coating of alginate and chitosan with grapefruit seed extract for shelf-life extension of shrimp (Litopenaeus vannamei) stored at $4^{\circ}C$. Int. J. Biol. Macromol., 120, 1468-1473 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.160
  20. Olatunde, O.O., Benjakul, S., Natural preservatives for extending the shelf-life of seafood: a revisit. Compr. Rev. Food Sci. Food Saf., 17, 1595-1612 (2018). https://doi.org/10.1111/1541-4337.12390
  21. Brasil, I.M., Gomes, C., Puerta-Gomez, A., Castell-Perez, M.E., & Moreira, R.G., Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT Food Sci. Technol., 47, 39-45 (2012). https://doi.org/10.1016/j.lwt.2012.01.005
  22. Volpe, M.G., Siano, F., Paolucci, M., Sacco, A., Sorrentino, A., Malinconico, M., Varricchio, E. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchusmykiss) fillets. LWT Food Sci. Technol., 60, 615-622 (2015). https://doi.org/10.1016/j.lwt.2014.08.048
  23. Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J., Thom, D., Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett., 32, 195-198 (1973). https://doi.org/10.1016/0014-5793(73)80770-7
  24. Aloui, H., Khwaldia, K., Sanchez-Gonzalez, L., Muneret, L., Jeandel, C., Hamdi, M., Desobry, S., Alginate coatings containing grapefruit essential oil or grapefruit seed extract for grapes preservation. Int. J. Food Sci. Technol., 49, 952-959 (2014). https://doi.org/10.1111/ijfs.12387
  25. Lu, F., Liu, D., Ye, X., Wei, Y., Liu, F., Alginate-calcium coating incorporating nisin and EDTA maintains the quality of fresh northern snakehead (Channa argus) fillets stored at $4^{\circ}C$. J. Sci. Food Agric., 89, 848-854 (2009). https://doi.org/10.1002/jsfa.3523
  26. Kester, J.J., Fennema, O.R., Edible films and coatings: A review. Food Technol., 40, 47-59 (1986)
  27. Neetoo, H., Ye, M., Chen, H., Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. Int. J. Food Microbiol., 136, 326-331 (2010). https://doi.org/10.1016/j.ijfoodmicro.2009.10.003
  28. Costa, C., Conte, A., Del Nobile, M.A., Effective preservation techniques to prolong the shelf life of ready to eat oysters. J. Sci. Food Agric., 94, 2661-2667 (2014). https://doi.org/10.1002/jsfa.6605
  29. Li, T., Li, J., Hu, W., Li, X., Quality enhancement in refriger ated red drum (Sciaenops ocellatus) fillets using chitosan coatings containing natural preservatives. Food Chem., 138, 821-826 (2013). https://doi.org/10.1016/j.foodchem.2012.11.092
  30. Poverenov, E., Danino, S., Horev, B., Granit, R., Vinokur, Y., Rodov, V., Layer-by-layer electrostatic deposition of edible coating on fresh cut melon model: Anticipated and unexpected effects of alginate-chitosan combination. Food Bioproc. Tech., 7, 1424-1432 (2014). https://doi.org/10.1007/s11947-013-1134-4
  31. Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y., Chi, Y., Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chem., 115, 66-70 (2009). https://doi.org/10.1016/j.foodchem.2008.11.060
  32. Ojagh, S.M., Rezaei, M., Razavi, S.H., Hosseini, S.M.H., Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem., 120, 193-198 (2010). https://doi.org/10.1016/j.foodchem.2009.10.006
  33. Necas, J., Bartosikova, L., Carrageenan: a review. J. Vet. Med. Educ., 58, 187-205 (2013).
  34. Pavlath, A.E., Orts, W., 2009. Edible films and coatings: why, what, and how?, New York, NY, USA, pp. 1-23.
  35. Moraes, K.S.D., Fagundes, C., Melo, M.C., Andreani, P., Monteiro, A.R., Conservation of Williams pear using edible coating with alginate and carrageenan. Food Sci. Technol (Campinas)., 32, 679-684 (2012). https://doi.org/10.1590/S0101-20612012005000106
  36. Hamzah, H.M., Osman, A., Tan, C.P., Ghazali, F.M., Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika). Postharvest Biol. Technol., 75, 142-146 (2013). https://doi.org/10.1016/j.postharvbio.2012.08.012
  37. McNamee, B.F., O'Riorda, E.D., O'Sullivan, M., Effect of partial replacement of gum arabic with carbohydrates on its microencapsulation properties. J. Agric. Food Chem., 49, 3385-3388 (2001). https://doi.org/10.1021/jf001003y
  38. Ye, A., Edwards, P.J., Gilliland, J., Jameson, G.B., Singh, H., Temperature-dependent complexation between sodium caseinate and gum arabic. Food Hydrocoll., 26, 82-88 (2012). https://doi.org/10.1016/j.foodhyd.2011.04.004
  39. Cai, L., Wu, X., Dong, Z., Li, X., Yi, S., Li, J., Physicochemical responses and quality changes of red sea bream (Pagrosomus major) to gum arabic coating enriched with ergothioneine treatment during refrigerated storage. Food Chem., 160, 82-89 (2014). https://doi.org/10.1016/j.foodchem.2014.03.093
  40. Gennadios, A., McHugh, T.H., Weller, C.L., Krochta, J.M., 1994. Edible coating films based on proteins. Edible coatings and films to improve food quality, Lancaster, PA, USA, pp. 201-227.
  41. Mate, J.I., Krochta, J.M., Oxygen uptake model for uncoated and coated peanuts. J. Food Eng., 35, 299-312 (1998). https://doi.org/10.1016/S0260-8774(98)00010-7
  42. Guilbert, S., Gontard, N., Cuq, B., Technology and applications of edible protective films. Packag. Tech. Sci., 8, 339-346 (1995). https://doi.org/10.1002/pts.2770080607
  43. Cosler, H.B., Prevention of staleness, rancidity in nut meats and peanuts. Peanuts J. Nut. World, 37, 10-15 (1958).
  44. Wang, Z., Hu, S., Gao, Y., Ye, C., Wang, H., Effect of collagen-lysozyme coating on fresh-salmon fillets preservation. LWT Food Sci. Technol., 75, 59-64 (2017). https://doi.org/10.1016/j.lwt.2016.08.032
  45. McHugh, T.H., Protein-lipid interactions in edible films and coatings. Mol. Nutr. Food Res., 44, 148-151 (2000).
  46. De Azeredo, H.M.C., 2012, Edible coatings, Boca Raton, FL, USA, p. 345.
  47. Chamanara, V., Shabanpour, B., Gorgin, S., Khomeiri, M., An investigation on characteristics of rainbow trout coated using chitosan assisted with thyme essential oil. Int. J. Biol. Macromol., 50, 540-544 (2012). https://doi.org/10.1016/j.ijbiomac.2012.01.016
  48. Stuchell, Y.M., Krochta, J.M., Edible coatings on frozen king salmon: Effect of whey protein isolate and acetylated monoglycerides on moisture loss and lipid oxidation. J. Food Sci., 60, 28-31 (1995). https://doi.org/10.1111/j.1365-2621.1995.tb05599.x
  49. Song, Y., Liu, L., Shen, H., You, J., Luo, Y., Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 22, 608-615 (2011). https://doi.org/10.1016/j.foodcont.2010.10.012
  50. Datta, S., Janes, M.E., Xue, Q.G., Losso, J., La Peyre, J.F., Control of Listeria monocytogenes and Salmonella anatum on the surface of smoked salmon coated with calcium alginate coating containing oyster lysozyme and nisin. J. Food Sci., 73, M67-M71 (2008). https://doi.org/10.1111/j.1750-3841.2007.00633.x
  51. Nawapat, D., Thawien, W., Effect of UV-treatment on the properties of biodegradable rice starch films. Food Res. Int., 20, 1313 (2013).
  52. Leistner, L., Food preservation by combined methods. Food Res. Int., 25, 151-158 (1992). https://doi.org/10.1016/0963-9969(92)90158-2
  53. Farkas, J., Combination of irradiation with mild heat treatment. Food Control, 1, 223-229 (1990). https://doi.org/10.1016/0956-7135(90)90073-L
  54. Lacroix, M., Ouattara, B., Combined industrial processes with irradiation to assure innocuity and preservation of food products-a review. Food Res. Int., 33, 719-724 (2000). https://doi.org/10.1016/S0963-9969(00)00085-5
  55. Lopez-Gonzalez, V., Murano, P.S., Brennan, R.E., Murano, E.A., Influence of various commercial packaging conditions on survival of Escherichia coli O157: H7 to irradiation by electron beam versus gamma rays. J. Food Prot., 62, 10-15 (1999). https://doi.org/10.4315/0362-028X-62.1.10
  56. Keklik, N.M., Krishnamurthy, K., Demirci, A., 2012. Microbial decontamination of food by ultraviolet (UV) and pulsed UV light, London, UK, pp. 344-369.
  57. Bialka, K.L., Demirci, A., Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157: H7 and Salmonella spp. on raspberries and strawberries. J. Food Sci., 73, M201-M207 (2008). https://doi.org/10.1111/j.1750-3841.2008.00743.x
  58. Ozer, N.P., Demirci, A., Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. Int. J. Food Sci. Technol., 41, 354-360 (2006). https://doi.org/10.1111/j.1365-2621.2005.01071.x
  59. Lin, M.G., Lasekan, O., Saari, N., Khairunniza-Bejo, S., The effect of the application of edible coatings on or before ultraviolet treatment on postharvested longan fruits. J. Food Qual. 2017, 1-11 (2017).
  60. Ghate, V., Kumar, A., Zhou, W., Yuk, H.G., Irradiance and temperature influence the bactericidal effect of 460-nanometer light-emitting diodes on Salmonella in orange juice. J. Food Prot., 79, 553-560 (2016). https://doi.org/10.4315/0362-028X.JFP-15-394
  61. Ghate, V., Kumar, A., Kim, M.J., Bang, W.S., Zhou, W., Yuk, H.G., Effect of 460 nm light emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures. J. Food Eng., 196, 130-138 (2017). https://doi.org/10.1016/j.jfoodeng.2016.10.013
  62. Kim, M.J., Bang, W.S., Yuk, H.G., $405{\pm}5$ nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration. Food Microbiol., 62, 124-132 (2017). https://doi.org/10.1016/j.fm.2016.10.002
  63. Kim, M.J., Tang, C.H., Bang, W.S., Yuk, H.G., Antibacterial effect of $405{\pm}5$ nm light emitting diode illumination against Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. Int. J. Food Microbiol., 244, 82-89 (2017). https://doi.org/10.1016/j.ijfoodmicro.2016.12.023
  64. Sommers, C., Gunther IV, N.W., Sheen, S., Inactivation of Salmonella spp., pathogenic Escherichia coli, Staphylococcus spp., or Listeria monocytogenes in chicken purge or skin using a 405-nm LED array. Food Microbiol., 64, 135-138 (2017). https://doi.org/10.1016/j.fm.2016.12.011
  65. Demidova, T.N., Hamblin, M.R., Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob. Agents Chemother., 49, 2329-2335 (2005). https://doi.org/10.1128/AAC.49.6.2329-2335.2005
  66. Smith, J., Burritt, D., Bannister, P., Ultraviolet-B radiation leads to a reduction in free polyamines in Phaseolus vulgaris L. Plant Growth Regul., 35, 289-294 (2001). https://doi.org/10.1023/A:1014459232710
  67. Luksiene, Z., Zukauskas, A., Prospects of photosensitization in control of pathogenic and harmful micro-organisms. J. Appl. Microbiol., 107, 1415-1424 (2009). https://doi.org/10.1111/j.1365-2672.2009.04341.x
  68. Luksiene, Z., Paskeviciute, E., Novel approach to the microbial decontamination of strawberries: chlorophyllin based photosensitization. J. Appl. Microbiol., 110, 1274-1283 (2011). https://doi.org/10.1111/j.1365-2672.2011.04986.x
  69. Lopez-Carballo, G., Hernandez-Munoz, P., Gavara, R., Ocio, M.J., Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products. Int. J. Food Microbiol., 126, 65-70 (2008). https://doi.org/10.1016/j.ijfoodmicro.2008.05.002
  70. Abdipour, M., Malekhossini, P.S., Hosseinifarahi, M., Radi, M., Integration of UV irradiation and chitosan coating: A powerful treatment for maintaining the postharvest quality of sweet cherry fruit. Sci. Hortic., 264, 109197 (2020). https://doi.org/10.1016/j.scienta.2020.109197
  71. Arroyo, B.J., Bezerra, A.C., Oliveira, L.L., Arroyo, S.J., de Melo, E. A., Santos, A.M.P., Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chem., 309, 125566 (2020). https://doi.org/10.1016/j.foodchem.2019.125566
  72. Zambrano-Zaragoza, M.L., Quintanar-Guerrero, D., Del Real, A., Gonzalez-Reza, R.M., Cornejo-Villegas, M.A., Gutierrez-Cortez, E., Effect of Nano-edible coating based on beeswax solid lipid nanoparticles on Strawberry's preservation. Coatings 2020, 10(3), 253 (2020).
  73. Dai, L., Zhang, J., Cheng, F., Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chem., 311, 125891 (2020). https://doi.org/10.1016/j.foodchem.2019.125891