DOI QR코드

DOI QR Code

Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer

  • Lim, Dansaem (Division of Biological Sciences, Sookmyung Women's University) ;
  • Do, Yeojin (Division of Biological Sciences, Sookmyung Women's University) ;
  • Kwon, Byung Su (Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital) ;
  • Chang, Woochul (Department of Biology Education, College of Education, Pusan National University) ;
  • Lee, Myeong-Sok (Division of Biological Sciences, Sookmyung Women's University) ;
  • Kim, Jongmin (Division of Biological Sciences, Sookmyung Women's University) ;
  • Cho, Jin Gu (Division of Biological Sciences, Sookmyung Women's University)
  • Received : 2020.03.20
  • Published : 2020.06.30

Abstract

Tumor angiogenesis is an essential process for growth and metastasis of cancer cells as it supplies tumors with oxygen and nutrients. During tumor angiogenesis, many pro-angiogenic factors are secreted by tumor cells to induce their own vascularization via activation of pre-existing host endothelium. However, accumulating evidence suggests that vasculogenic mimicry (VM) is a key alternative mechanism for tumor vascularization when tumors are faced with insufficient supply of oxygen and nutrients. VM is a tumor vascularization mechanism in which tumors create a blood supply system, in contrast to tumor angiogenesis mechanisms that depend on pre-existing host endothelium. VM is closely associated with tumor progression and poor prognosis in many cancers. Therefore, inhibition of VM may be a promising therapeutic strategy and may overcome the limitations of anti-angiogenesis therapy for cancer patients. In this review, we provide an overview of the current anti-angiogenic therapies for ovarian cancer and the current state of knowledge regarding the links between microRNAs and the VM process, with a focus on the mechanism that regulates associated signaling pathways in ovarian cancer. Moreover, we discuss the potential for VM as a therapeutic strategy against ovarian cancer.

Keywords

References

  1. Siegel RL, Miller KD and Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69, 7-34 https://doi.org/10.3322/caac.21551
  2. Sudo T (2012) Molecular-targeted therapies for ovarian cancer: prospects for the future. Int J Clin Oncol 17, 424-429 https://doi.org/10.1007/s10147-012-0461-1
  3. Hennessy BT, Coleman RL and Markman M (2009) Ovarian cancer. Lancet 374, 1371-1382 https://doi.org/10.1016/S0140-6736(09)61338-6
  4. Webb PM and Jordan SJ (2017) Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol 41, 3-14 https://doi.org/10.1016/j.bpobgyn.2016.08.006
  5. Park JA and Kwon YG (2018) Hippo-YAP/TAZ signaling in angiogenesis. BMB Rep 51, 157-162 https://doi.org/10.5483/BMBRep.2018.51.3.016
  6. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29, 15-18 https://doi.org/10.1053/sonc.2002.37263
  7. Shibuya M (2008) Vascular endothelial growth factordependent and -independent regulation of angiogenesis. BMB Rep 41, 278-286 https://doi.org/10.5483/BMBRep.2008.41.4.278
  8. Ribatti D, Annese T, Ruggieri S, Tamma R and Crivellato E (2019) Limitations of Anti-Angiogenic Treatment of Tumors. Transl Oncol 12, 981-986 https://doi.org/10.1016/j.tranon.2019.04.022
  9. Dunleavey JM and Dudley AC (2012) Vascular Mimicry: Concepts and Implications for Anti-Angiogenic Therapy. Curr Angiogenes 1, 133-138 https://doi.org/10.2174/2211552811201020133
  10. Maniotis AJ, Folberg R, Hess A et al (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155, 739-752 https://doi.org/10.1016/S0002-9440(10)65173-5
  11. Zhang X, Zhang J, Zhou H, Fan G and Li Q (2019) Molecular Mechanisms and Anticancer Therapeutic Strategies in Vasculogenic Mimicry. J Cancer 10, 6327-6340 https://doi.org/10.7150/jca.34171
  12. Sood AK, Fletcher MS, Zahn CM et al (2002) The clinical significance of tumor cell-lined vasculature in ovarian carcinoma: implications for anti-vasculogenic therapy. Cancer Biol Ther 1, 661-664 https://doi.org/10.4161/cbt.316
  13. Park Y and Kim J (2019) Regulation of IL-6 signaling by miR-125a and let-7e in endothelial cells controls vasculogenic mimicry formation of breast cancer cells. BMB Rep 52, 214-219 https://doi.org/10.5483/bmbrep.2019.52.3.308
  14. Fan YL, Zheng M, Tang YL and Liang XH (2013) A new perspective of vasculogenic mimicry: EMT and cancer stem cells (Review). Oncol Lett 6, 1174-1180 https://doi.org/10.3892/ol.2013.1555
  15. Yu L, Zhu B, Wu S et al (2017) Evaluation of the correlation of vasculogenic mimicry, ALDH1, KiSS-1, and MACC1 in the prediction of metastasis and prognosis in ovarian carcinoma. Diagn Pathol 12, 23 https://doi.org/10.1186/s13000-017-0612-9
  16. Liang J, Yang B, Cao Q and Wu X (2016) Association of Vasculogenic Mimicry Formation and CD133 Expression with Poor Prognosis in Ovarian Cancer. Gynecol Obstet Invest 81, 529-536 https://doi.org/10.1159/000445747
  17. Chae YC and Kim JH (2018) Cancer stem cell metabolism: target for cancer therapy. BMB Rep 51, 319-326 https://doi.org/10.5483/BMBRep.2018.51.7.112
  18. Zhang D, Sun B, Zhao X et al (2014) Twist1 expression induced by sunitinib accelerates tumor cell vasculogenic mimicry by increasing the population of CD133+ cells in triple-negative breast cancer. Mol Cancer 13, 207 https://doi.org/10.1186/1476-4598-13-207
  19. Xu Y, Li Q, Li XY, Yang QY, Xu WW and Liu GL (2012) Short-term anti-vascular endothelial growth factor treatment elicits vasculogenic mimicry formation of tumors to accelerate metastasis. J Exp Clin Cancer Res 31, 16 https://doi.org/10.1186/1756-9966-31-16
  20. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438, 932-936 https://doi.org/10.1038/nature04478
  21. Boocock CA, Charnock-Jones DS, Sharkey AM et al (1995) Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst 87, 506-516 https://doi.org/10.1093/jnci/87.7.506
  22. Chen Y, Zhang L, Liu WX and Wang K (2018) VEGF and SEMA4D have synergistic effects on the promotion of angiogenesis in epithelial ovarian cancer. Cell Mol Biol Lett 23, 2 https://doi.org/10.1186/s11658-017-0058-9
  23. Wang JY, Sun T, Zhao XL et al (2008) Functional significance of VEGF-a in human ovarian carcinoma: role in vasculogenic mimicry. Cancer Biol Ther 7, 758-766 https://doi.org/10.4161/cbt.7.5.5765
  24. Reinthaller A (2016) Antiangiogenic therapies in ovarian cancer. Memo 9, 139-143 https://doi.org/10.1007/s12254-016-0282-4
  25. Markowska A, Sajdak S, Markowska J and Huczynski A (2017) Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer. Eur J Med Chem 142, 87-94 https://doi.org/10.1016/j.ejmech.2017.06.030
  26. Richardson DL (2019) New and Novel Therapies for Gynecologic Cancers. Semin Oncol Nurs 35, 217-219 https://doi.org/10.1016/j.soncn.2019.02.009
  27. Cortez AJ, Tudrej P, Kujawa KA and Lisowska KM (2018) Advances in ovarian cancer therapy. Cancer Chemother Pharmacol 81, 17-38 https://doi.org/10.1007/s00280-017-3501-8
  28. Wedge SR, Kendrew J, Hennequin LF et al (2005) AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65, 4389-4400 https://doi.org/10.1158/0008-5472.CAN-04-4409
  29. Ledermann JA, Embleton AC, Raja F et al (2016) Cediranib in patients with relapsed platinum-sensitive ovarian cancer (ICON6): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 387, 1066-1074 https://doi.org/10.1016/S0140-6736(15)01167-8
  30. Raja FA, Griffin CL, Qian W et al (2011) Initial toxicity assessment of ICON6: a randomised trial of cediranib plus chemotherapy in platinum-sensitive relapsed ovarian cancer. Br J Cancer 105, 884-889 https://doi.org/10.1038/bjc.2011.334
  31. Pick AM and Nystrom KK (2012) Pazopanib for the treatment of metastatic renal cell carcinoma. Clin Ther 34, 511-520 https://doi.org/10.1016/j.clinthera.2012.01.014
  32. Schoffski P (2012) Pazopanib in the treatment of soft tissue sarcoma. Expert Rev Anticancer Ther 12, 711-723 https://doi.org/10.1586/era.12.41
  33. Pignata S, Lorusso D, Scambia G et al (2015) Pazopanib plus weekly paclitaxel versus weekly paclitaxel alone for platinum-resistant or platinum-refractory advanced ovarian cancer (MITO 11): a randomised, open-label, phase 2 trial. Lancet Oncol 16, 561-568 https://doi.org/10.1016/S1470-2045(15)70115-4
  34. du Bois A, Floquet A, Kim JW et al (2014) Incorporation of pazopanib in maintenance therapy of ovarian cancer. J Clin Oncol 32, 3374-3382 https://doi.org/10.1200/JCO.2014.55.7348
  35. Floquet A, Vergote I, Colombo N et al (2015) Progressionfree survival by local investigator versus independent central review: comparative analysis of the AGO-OVAR16 Trial. Gynecol Oncol 136, 37-42 https://doi.org/10.1016/j.ygyno.2014.11.074
  36. Awasthi N and Schwarz RE (2015) Profile of nintedanib in the treatment of solid tumors: the evidence to date. Onco Targets Ther 8, 3691-3701 https://doi.org/10.2147/OTT.S78805
  37. Hughes G, Toellner H, Morris H, Leonard C and Chaudhuri N (2016) Real World Experiences: Pirfenidone and Nintedanib are Effective and Well Tolerated Treatments for Idiopathic Pulmonary Fibrosis. J Clin Med 5, 78-89 https://doi.org/10.3390/jcm5090078
  38. du Bois A, Kristensen G, Ray-Coquard I et al (2016) Standard first-line chemotherapy with or without nintedanib for advanced ovarian cancer (AGO-OVAR 12): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 17, 78-89 https://doi.org/10.1016/S1470-2045(15)00366-6
  39. Monk BJ, Poveda A, Vergote I et al (2014) Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15, 799-808 https://doi.org/10.1016/S1470-2045(14)70244-X
  40. van Beijnum JR, Nowak-Sliwinska P, Huijbers EJ, Thijssen VL and Griffioen AW (2015) The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev 67, 441-461 https://doi.org/10.1124/pr.114.010215
  41. Sood AK, Seftor EA, Fletcher MS et al (2001) Molecular determinants of ovarian cancer plasticity. Am J Pathol 158, 1279-1288 https://doi.org/10.1016/s0002-9440(10)64079-5
  42. Jo HN, Kang H, Lee A et al (2017) Endothelial miR-26a regulates VEGF-Nogo-B receptor-mediated angiogenesis. BMB Rep 50, 384-389 https://doi.org/10.5483/BMBRep.2017.50.7.085
  43. Carmeliet P and Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307 https://doi.org/10.1038/nature10144
  44. Hendrix MJ, Seftor EA, Meltzer PS et al (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci U S A 98, 8018-8023 https://doi.org/10.1073/pnas.131209798
  45. Du J, Sun B, Zhao X et al (2014) Hypoxia promotes vasculogenic mimicry formation by inducing epithelialmesenchymal transition in ovarian carcinoma. Gynecol Oncol 133, 575-583 https://doi.org/10.1016/j.ygyno.2014.02.034
  46. Liu W, Lv C, Zhang B, Zhou Q and Cao Z (2017) MicroRNA-27b functions as a new inhibitor of ovarian cancer-mediated vasculogenic mimicry through suppression of VE-cadherin expression. RNA 23, 1019-1027 https://doi.org/10.1261/rna.059592.116
  47. Czekierdowski A, Czekierdowska S, Stachowicz N, Lozinski T and Gurynowicz G (2017) Mig-7 expression and vasculogenic mimicry in malignant ovarian tumors. Ginekol Pol 88, 552-561 https://doi.org/10.5603/GP.a2017.0100
  48. Lapeyre-Prost A, Terme M, Pernot S et al (2017) Immunomodulatory Activity of VEGF in Cancer. Int Rev Cell Mol Biol 330, 295-342 https://doi.org/10.1016/bs.ircmb.2016.09.007
  49. Jeong MS, Bae JS and Jin HK (2019) Vascular endothelial growth factor improves the therapeutic effects of cyclodextrin in Niemann-Pick type C mice. Anim Cells Syst (Seoul) 23, 346-354 https://doi.org/10.1080/19768354.2019.1651768
  50. Mei J, Gao Y, Zhang L et al (2008) VEGF-siRNA silencing induces apoptosis, inhibits proliferation and suppresses vasculogenic mimicry in osteosarcoma in vitro. Exp Oncol 30, 29-34
  51. Qin L, Ren Y, Chen AM et al (2014) Peroxisome proliferator-activated receptor gamma ligands inhibit VEGF-mediated vasculogenic mimicry of prostate cancer through the AKT signaling pathway. Mol Med Rep 10, 276-282 https://doi.org/10.3892/mmr.2014.2198
  52. Cong R, Sun Q, Yang L, Gu H, Zeng Y and Wang B (2009) Effect of Genistein on vasculogenic mimicry formation by human uveal melanoma cells. J Exp Clin Cancer Res 28, 124 https://doi.org/10.1186/1756-9966-28-124
  53. Cheng N, Brantley DM, Liu H et al (2002) Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 1, 2-11 https://doi.org/10.1186/1476-4598-1-2
  54. Manandhar S and Lee YM (2018) Emerging role of RUNX3 in the regulation of tumor microenvironment. BMB Rep 51, 174-181 https://doi.org/10.5483/BMBRep.2018.51.4.033
  55. Zimna A and Kurpisz M (2015) Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. Biomed Res Int 2015, 549412 https://doi.org/10.1155/2015/549412
  56. Yu K, Xiang L, Li S, Wang S, Chen C and Mu H (2019) HIF1alpha promotes prostate cancer progression by increasing ATG5 expression. Anim Cells Syst (Seoul) 23, 326-334 https://doi.org/10.1080/19768354.2019.1658637
  57. Zhang S, Zhang D and Sun B (2007) Vasculogenic mimicry: current status and future prospects. Cancer Lett 254, 157-164 https://doi.org/10.1016/j.canlet.2006.12.036
  58. Sun B, Zhang D, Zhang S, Zhang W, Guo H and Zhao X (2007) Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 249, 188-197 https://doi.org/10.1016/j.canlet.2006.08.016
  59. Su M, Feng YJ, Yao LQ et al (2008) Plasticity of ovarian cancer cell SKOV3ip and vasculogenic mimicry in vivo. Int J Gynecol Cancer 18, 476-486 https://doi.org/10.1111/j.1525-1438.2007.01034.x
  60. Herr F, Baal N, Reisinger K et al (2007) HCG in the regulation of placental angiogenesis. Results of an in vitro study. Placenta 28 Suppl A, S85-93 https://doi.org/10.1016/j.placenta.2007.02.002
  61. Muller CY and Cole LA (2009) The quagmire of hCG and hCG testing in gynecologic oncology. Gynecol Oncol 112, 663-672 https://doi.org/10.1016/j.ygyno.2008.09.030
  62. Su M, Wei W, Xu X et al (2011) Role of hCG in vasculogenic mimicry in OVCAR-3 ovarian cancer cell line. Int J Gynecol Cancer 21, 1366-1374 https://doi.org/10.1097/IGC.0b013e31822c7529
  63. Gao S, Fan C, Huang H, Zhu C, Su M and Zhang Y (2016) Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett 12, 459-466 https://doi.org/10.3892/ol.2016.4630
  64. Qiao L, Gu Q, Dai Y et al (2008) XIAP-associated factor 1 (XAF1) suppresses angiogenesis in mouse endothelial cells. Tumour Biol 29, 122-129 https://doi.org/10.1159/000137831
  65. Zhu LM, Shi DM, Dai Q et al (2014) Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget 5, 5403-5415 https://doi.org/10.18632/oncotarget.2114
  66. Vartanian AA, Burova OS, Stepanova EV and Baryshnikov AY (2007) The involvement of apoptosis in melanoma vasculogenic mimicry. Melanoma Res 17, 1-8 https://doi.org/10.1097/CMR.0b013e3280112b76
  67. Wang Y, Liu P, Wang X and Mao H (2017) Role of Xlinked inhibitor of apoptosisassociated factor1 in vasculogenic mimicry in ovarian cancer. Mol Med Rep 16, 325-330 https://doi.org/10.3892/mmr.2017.6597
  68. Dejana E (2010) The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 107, 943-952 https://doi.org/10.1161/CIRCRESAHA.110.223750
  69. Kim NH, Lee Y and Yook JI (2018) Dishevelling Wnt and Hippo. BMB Rep 51, 425-426 https://doi.org/10.5483/BMBRep.2018.51.9.179
  70. Qi H, Sun B, Zhao X et al (2014) Wnt5a promotes vasculogenic mimicry and epithelial-mesenchymal transition via protein kinase Calpha in epithelial ovarian cancer. Oncol Rep 32, 771-779 https://doi.org/10.3892/or.2014.3229
  71. Rabbani SA and Mazar AP (2001) The role of the plasminogen activation system in angiogenesis and metastasis. Surg Oncol Clin N Am 10, 393-415, x https://doi.org/10.1016/S1055-3207(18)30072-3
  72. Tang J, Wang J, Fan L et al (2016) cRGD inhibits vasculogenic mimicry formation by down-regulating uPA expression and reducing EMT in ovarian cancer. Oncotarget 7, 24050-24062 https://doi.org/10.18632/oncotarget.8079
  73. Sestito R, Cianfrocca R, Rosano L et al (2016) Macitentan blocks endothelin-1 receptor activation required for chemoresistant ovarian cancer cell plasticity and metastasis. Life Sci 159, 43-48 https://doi.org/10.1016/j.lfs.2016.01.009
  74. Orecchia P, Balza E, Pietra G et al (2019) L19-IL2 Immunocytokine in Combination with the Anti-Syndecan-1 46F2SIP Antibody Format: A New Targeted Treatment Approach in an Ovarian Carcinoma Model. Cancers (Basel) 11, 1232-1250 https://doi.org/10.3390/cancers11091232
  75. Kim J (2018) MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology. BMB Rep 51, 65-72 https://doi.org/10.5483/BMBRep.2018.51.2.011
  76. Hernandez R, Sanchez-Jimenez E, Melguizo C, Prados J and Rama AR (2018) Downregulated microRNAs in the colorectal cancer: diagnostic and therapeutic perspectives. BMB Rep 51, 563-571 https://doi.org/10.5483/bmbrep.2018.51.11.116
  77. Suh N (2018) MicroRNA controls of cellular senescence. BMB Rep 51, 493-499 https://doi.org/10.5483/BMBRep.2018.51.10.209
  78. Kinose Y, Sawada K, Nakamura K and Kimura T (2014) The role of microRNAs in ovarian cancer. Biomed Res Int 2014, 249393 https://doi.org/10.1155/2014/249393
  79. Sun Q, Zou X, Zhang T, Shen J, Yin Y and Xiang J (2014) The role of miR-200a in vasculogenic mimicry and its clinical significance in ovarian cancer. Gynecol Oncol 132, 730-738 https://doi.org/10.1016/j.ygyno.2014.01.047
  80. Salinas-Vera YM, Gallardo-Rincon D, Garcia-Vazquez R et al (2019) HypoxamiRs Profiling Identify miR-745 as a Regulator of the Early Stages of Vasculogenic Mimicry in SKOV3 Ovarian Cancer Cells. Front Oncol 9, 381 https://doi.org/10.3389/fonc.2019.00381
  81. Cao L, Wan Q, Li F and Tang CE (2018) MiR-363 inhibits cisplatin chemoresistance of epithelial ovarian cancer by regulating snail-induced epithelial-mesenchymal transition. BMB Rep 51, 456-461 https://doi.org/10.5483/BMBRep.2018.51.9.104
  82. Choi PW and Ng SW (2017) The Functions of MicroRNA-200 Family in Ovarian Cancer: Beyond Epithelial-Mesenchymal Transition. Int J Mol Sci 18, 1207-1226 https://doi.org/10.3390/ijms18061207
  83. Monk BJ, Minion LE and Coleman RL (2016) Antiangiogenic agents in ovarian cancer: past, present, and future. Ann Oncol 27 Suppl 1, i33-i39 https://doi.org/10.1093/annonc/mdw093