DOI QR코드

DOI QR Code

Investigation of Factors for Promoting Densification of the Sintered Compact during Pressurized Sintering of the Amorphous Ti5Si3 MA Powder

비정질상인 Ti5Si3 MA분말의 가압소결 동안 소결체의 치밀화 촉진현상 요인에 대한 조사

  • Han, Chang-Suk (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Jin, Sung-Yooun (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Kwon, Hyuk-Ku (Dept. of Environmental Engineering, Hoseo University)
  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 진성윤 (호서대학교 자동차ICT공학과) ;
  • 권혁구 (호서대학교 환경공학과)
  • Received : 2020.04.20
  • Accepted : 2020.05.22
  • Published : 2020.06.27

Abstract

In this study, factors considered to be causes of promotion of densification of sintered pellets identified during phase change are reviewed. As a result, conclusions shown below are obtained for each factor. In order for MA powder to soften, a temperature of 1,000 K or higher is required. In order to confirm the temporary increase in density throughout the sintered pellet, the temperature rise due to heat during phase change was found not to have a significant effect. While examining the thermal expansion using the compressed powder, which stopped densification at a temperature below the MA powder itself, and the phase change temperature, no shrinkage phenomenon contributing to the promotion of densification is observed. The two types of powder made of Ti-silicide through heat treatment are densified only in the high temperature region of 1,000 K or more; it can be estimated that this is the effect of fine grain superplasticity. In the densification of the amorphous powder, the dependence of sintering pressure and the rate of temperature increase are shown. It is thought that the specific densification behavior identified during the phase change of the Ti-37.5 mol.%Si composition MA powder reviewed in this study is the result of the acceleration of the powder deformation by the phase change from non-equilibrium phase to equilibrium phase.

Keywords

References

  1. A. S. Hell, K. E. Easterling and M. F. Ashby, Acta Metall., 33, 2163 (1985). https://doi.org/10.1016/0001-6160(85)90177-4
  2. X. X. Ye, H. Imai, J. H. Shen, B. Chen, G. Q. Han, J. Umeda, M. Takahashi and K. Kondoh, J. Alloys Compd., 694, 82 (2017). https://doi.org/10.1016/j.jallcom.2016.09.319
  3. H. Hashimoto, Z. M. Sun, Y. Inoue and S. Tada, J. Alloys Compd., 426, 263 (2006). https://doi.org/10.1016/j.jallcom.2005.12.112
  4. J. Liu, Y. Bai, P. Chen, N. Cui and H. Yin, J. Alloys Compd., 555, 375 (2013). https://doi.org/10.1016/j.jallcom.2012.12.100
  5. M. A. de Souza, E. C. T. Ramos and A. S. Ramos, Mater. Sci. Forum, 727/728, 227 (2012). https://doi.org/10.4028/www.scientific.net/MSF.727-728.227
  6. A. A. Nepapushev, A. S. Rogachev and A. S. Mukasyan, Intermetallics, 93, 366 (2018). https://doi.org/10.1016/j.intermet.2017.10.022
  7. S. A. Namjoshi and N. N. Thadhani, Scr. Mater.. 40, 1347 (1999). https://doi.org/10.1016/S1359-6462(99)00083-4
  8. N. Miyano, H. Iwasa, K. Isonishi and K. Ameyama, Mater. Trans., 45, 2552 (2004). https://doi.org/10.2320/matertrans.45.2552
  9. N. Miyano, H. Isawa, K. Isonishi, S. Tanaka, S. Sugiyama and K. Ameyama, Mater. Sci. Forum, 447/448, 311 (2004). https://doi.org/10.4028/www.scientific.net/MSF.447-448.311
  10. A. Goyal, T. Iwasaki, N. Itagaki, T. Den and H. Kumomi, Mater. Res. Soc. Symp. Proc., 1109, 43 (2008).
  11. T. Yamasaki, Y. Ogino, K. Morishita, K. Fukuoka, T. Atou and Y. Syono, Mater. Sci. Eng., A, 179/180, 220 (1994). https://doi.org/10.1016/0921-5093(94)90197-X
  12. W. Tian, Z. Sun, H. Hashimoto and Y. Du, Mater. Sci. Eng., A, 526, 16 (2009). https://doi.org/10.1016/j.msea.2009.08.029
  13. Y. Guo, B. Xu, G. Wu, S. Ma and K. Xu, Acta Metall. Sin., 43, 159 (2007). https://doi.org/10.3321/j.issn:0412-1961.2007.02.009
  14. A. Inoue, Y. Horio, Y. H. Kim and T. Masumoto, Mater. Trans. JIM, 33, 669 (1992). https://doi.org/10.2320/matertrans1989.33.669