DOI QR코드

DOI QR Code

Comparative Study of the Biological Activity of Propolis Extracts with Various Countries of Origin as Cosmetic Materials

원산지별 프로폴리스 추출물의 화장품 소재로서의 생리활성 비교연구

  • 정은선 (바이오스펙트럼(주) 생명과학연구소) ;
  • 원진배 (바이오스펙트럼(주) 생명과학연구소) ;
  • 지향기 (바이오스펙트럼(주) 생명과학연구소) ;
  • 유지영 (바이오스펙트럼(주) 생명과학연구소) ;
  • 오세영 (바이오스펙트럼(주) 생명과학연구소) ;
  • 김하연 (바이오스펙트럼(주) 생명과학연구소) ;
  • 신영희 (바이오스펙트럼(주) 생명과학연구소) ;
  • 김은빈 (바이오스펙트럼(주) 생명과학연구소) ;
  • 허강혁 (바이오스펙트럼(주) 생명과학연구소) ;
  • 박덕훈 (바이오스펙트럼(주) 생명과학연구소)
  • Received : 2020.06.02
  • Accepted : 2020.06.18
  • Published : 2020.06.30

Abstract

Propolis is a sticky resinous substance that is formed by the combination of honeybee secretions and resin of plants, which serves to protect from bacteria and viruses. This study aims to evaluate the efficacy of propolis extract from Korea (KPE), China (CPE), and Brazil (BPE) through antioxidant, antibacterial, whitening, and anti-inflammatory tests, and to examine their potential as cosmetic materials. KPE, CPE, and BPE showed significant antioxidant activities on flavonoid/polyphenol content and free radical scavenging activity. The antibacterial effect of propolis on skin flora was determined by measuring the minimal inhibitory concentration (MIC). KPE showed better antibacterial efficacy than CPE and BPE in C. acnes (KPE, CPE, and BPE: (62.5, 250, and 500) ㎍/mL, respectively). Furthermore, KPE inhibited the melanin synthesis in human epidermal melanocytes and production of nitric oxide and PGE2 induced by lipopolysaccharide (LPS) in mouse macrophages, which showed better than did CPE or BPE. Taken together, the propolis extracts can be applied to antioxidant, antibacterial, and anti-inflammatory ingredient for cosmetics, while KPE showed superior potential in antibacterial, anti-inflammatory, and whitening efficacies.

프로폴리스는 식물에서 채취한 수지에 꿀벌의 분비물이 합쳐져 만들어진 아교성 물질로 세균이나 바이러스로부터 자신을 보호하는 기능을 한다. 본 연구에서는 한국, 중국, 브라질 유래 프로폴리스 추출물의 항산화, 항균, 미백, 항염 활성을 비교하고, 이들 추출물의 화장품소재로서의 응용가능성을 살펴보았다. 플라보노이드, 폴리페놀함량분석과 자유라디칼 소거능 시험을 통해 항산화 활성을 확인한 결과 한국, 중국, 브라질 프로폴리스 추출물 모두 유의한 항산화 효능을 보였다. 피부에 상재하는 미생물에 대한 항균효능을 MIC 시험법을 통해 측정한 결과 C. acnes 균에서 한국 프로폴리스 추출물이 다른 추출물에 비해 우수한 항균력을 보였다(KPE: 62.5 ㎍/mL, CPE: 250 ㎍/mL, BPE: 500 ㎍/mL). 또한, 한국 프로폴리스 추출물은 멜라닌 세포의 멜라닌 생성을 억제하였고, 마우스대식세포에서 리포폴리사카라이드로 유도된 염증인자인 산화질소와 PGE2 생성을 나머지 두 추출물보다 우수하게 억제하였다. 이들 결과를 종합하면 프로폴리스 추출물은 항산화, 항균, 항염 효능소재로 응용될 수 있으며, 특히 항균, 항염, 미백에서 우수한 효능을 보인 한국프로폴리스추출물의 응용가능성이 우수함을 확인할 수 있었다.

Keywords

References

  1. L. Cornara, M. Biagi, J. Xiao, and B. Burlando, Therapeutic properties of bioactive compounds from dierent honeybee products, Front Pharmacol, 8, 412 (2017). https://doi.org/10.3389/fphar.2017.00412
  2. S. De Castro, Propolis: Biological and pharmacological activities. Therapeutic uses of this bee-product, Annu. Rev. Biomed. Sci., 3(4), 49 (2001).
  3. A. Karapetsas, G. P. Voulgaridou, M. Konialis, I. Tsochantaridis, S. Kynigopoulos, M. Lambropoulou, M. I. Stavropoulou, K. Stathopoulou, N. Aligiannis, P. Bozidis, A. Goussia, K. Gardikis, M. I. Panayiotidis, and A. Pappa, Propolis extracts inhibit UV-induced photodamage in human experimental in vitro skin models, Antioxidants (Basel), 8(5), 125 (2019). https://doi.org/10.3390/antiox8050125
  4. J. K. Choi, Y. H. Jang, S. Lee, S. R. Lee, Y. A. Choi, M. Jin, J. H. Choi, J. H. Park, P. H. Park, H. Choi, T. K. Kwon, D. Khang, and S. H. Kim, Chrysin attenuates atopic dermatitis by suppressing inflammation of keratinocytes, Food Chem. Toxicol., 110, 142 (2017). https://doi.org/10.1016/j.fct.2017.10.025
  5. S. Miyata, Y. Oda, C. Matsuo, H. Kumura, and K. Kobayashi, Stimulatory Effect of Brazilian propolis on hair growth through proliferation of keratinocytes in mice, J. Agric. Food Chem., 62(49), 11854 (2014). https://doi.org/10.1021/jf503184s
  6. J. Y. Lee, H. J. Choi, T. W. Chung, C. H. Kim, H. S. Jeong, and K. T. Ha, Caffeic acid phenethyl ester inhibits alpha-melanocyte stimulating hormone-induced melanin synthesis through suppressing transactivation activity of microphthalmia-associated transcription factor, J. Nat. Prod., 76(8), 1399 (2013). https://doi.org/10.1021/np400129z
  7. S. I Anjum, A. Ullah, K. A. Khan, M. Attaullah, H. Khan, H. Ali, M. A. Bashir, M. Tahir, M. J. Ansari, H. A. Ghramh, N. Adgaba, and C. K. Dash, Composition and functional properties of propolis (bee glue): A review, Saudi J Biol Sci, 26(7), 1695 (2019). https://doi.org/10.1016/j.sjbs.2018.08.013
  8. I. Przybylek and T. M. Karpinski, Antibacterial properties of propolis, Molecules, 24(11), 2047 (2019). https://doi.org/10.3390/molecules24112047
  9. L. Zhu, Y. Lu, W. G. Yu, X. Zhao, and Y. H. Lu, Anti-photoageing and anti-melanogenesis activities of chrysin, Pharm Biol., 54(11), 2692 (2016). https://doi.org/10.1080/13880209.2016.1179334
  10. K. M. Lim, S. Bae, J. E. Koo, E. S. Kim, O. N. Bae, and J. Y. Lee, Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester, Arch. Dermatol. Res., 307(3), 219 (2015). https://doi.org/10.1007/s00403-014-1529-8
  11. H. G. Ji, Y. R. Lee, M. S. Lee, K. H. Hwang, E. H. Kim, J. S. Park, and Y. S. Hong, Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism, Food chem, 233, 321 (2017). https://doi.org/10.1016/j.foodchem.2017.04.079
  12. C. C. Chang, M. H. Yang, H. M. Wen, and J. C. Chern, Estimation of total flavonoid content in propolis by two complementary colorimetric methods, J Food Drug Anal, 10(3), 178 (2002).
  13. N. S. Bryan and M. B. Grisham, Methods to detect nitric oxide and its metabolites in biological samples, Free Radic. Biol. Med., 43(5), 645 (2007). https://doi.org/10.1016/j.freeradbiomed.2007.04.026
  14. J. F. M. da Silva, M. C. de Souza, S. R. Matta, M. R. de Andrade, and F. V. N. Vidal, Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities, Food Chem, 99(3), 431(2006). https://doi.org/10.1016/j.foodchem.2005.07.055
  15. B. R. Vowels, S. Yang, and J. J. Leyden, Introduction of pro-inflammatory cytokines by a soluble factor of Propionibacerium acnes: implications for chronic inflammatory acne, Infect. Immun., 63(8), 3158 (1995). https://doi.org/10.1128/IAI.63.8.3158-3165.1995
  16. L. Blicharz, L. Rudnicka, and Z. Samochocki, Staphylococcus aureus: an underestimated factor in the pathogenesis of atopic dermatitis?, Postepy Dermatol Alergol, 36(1), 11 (2019). https://doi.org/10.5114/ada.2019.82821
  17. M. Otto, Staphylococcus epidermidis - the "accidental" pathogen, Nat. Rev. Microbiol., 7(8), 555 (2009). https://doi.org/10.1038/nrmicro2182
  18. N. McCartney-Francis, J. B. Allen, D. E. Mizel, J. E. Albina, Q. W. Xie, C. F. Nathan, and S. M. Wahl, Suppression of arthritis by an inhibitor of nitric oxide synthase, J. Exp. Med., 178(2), 749 (1993). https://doi.org/10.1084/jem.178.2.749
  19. E. Ricciotti and G. A. FitzGerald, Prostaglandins and inflammation, Arterioscler. Thromb. Vasc. Biol., 31(5), 986 (2011). https://doi.org/10.1161/ATVBAHA.110.207449