DOI QR코드

DOI QR Code

Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng

  • Hyun, Sun Hee (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Kim, Sung Won (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Seo, Hwi Won (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Youn, Soo Hyun (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Kyung, Jong Soo (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Lee, Yong Yook (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • In, Gyo (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Park, Chae-Kyu (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Han, Chang-Kyun (Laboratory of Efficacy Research, Korea Ginseng Corporation)
  • Received : 2019.09.22
  • Accepted : 2020.01.14
  • Published : 2020.07.15

Abstract

Panax ginseng, a medicinal plant, has been used as a blood-nourishing tonic for thousands of years in Asia, including Korea and China. P. ginseng exhibits adaptogen activity that maintains homeostasis by restoring general biological functions and non-specifically enhancing the body's resistance to external stress. Several P. ginseng effects have been reported. Korean Red Ginseng, in particular, has been reported in both basic and clinical studies to possess diverse effects such as enhanced immunity, fatigue relief, memory, blood circulation, and anti-oxidation. Moreover, it also protects against menopausal symptoms, cancer, cardiac diseases, and neurological disorders. The active components found in most Korean Red Ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds. In this review, the identity and bioactivity of the non-saponin components of Korean Red Ginseng discovered to date are evaluated and the components are classified into polysaccharide and nitrogen compounds (protein, peptide, amino acid, nucleic acid, and alkaloid), as well as fat-soluble components such as polyacetylene, phenols, essential oils, and phytosterols. The distinct bioactivity of Korean Red Ginseng was found to originate from both saponin and non-saponin components rather than from only one or two specific components. Therefore, it is important to consider saponin and non-saponin elements together.

Keywords

References

  1. Hu SY. The genus Panax (Ginseng) in Chinese medicine. Econ Bot 1976;30:11-28. https://doi.org/10.1007/BF02866780
  2. Hu SY. The ecology, phytogeography and ethnobotany of ginseng. In: Proceedings of the 2nd international ginseng symposium. Seoul, Korea: Korea Ginseng Research Institute; 1978. p. 149-57.
  3. Presons WS. American ginseng, Green gold. Asheville, NC: Bright Mountain Book, Inc.; 1994. p. 16-30.
  4. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98. https://doi.org/10.1016/j.jgr.2014.12.005
  5. Wang Y, Choi HK, Brinckmann JA, Jiang X, Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): a review. J Chromatogr A 2015;1426:1-15. https://doi.org/10.1016/j.chroma.2015.11.012
  6. So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018;42:549-61. https://doi.org/10.1016/j.jgr.2018.05.002
  7. Christensen LP. Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1-99. https://doi.org/10.1016/S1043-4526(08)00401-4
  8. Jiaoa L, Zhanga X, Wanga M, Li B, Liua Z, Liu S. Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing. Carbohydr Polym 2014;114:567-73. https://doi.org/10.1016/j.carbpol.2014.08.018
  9. Zhang YC, Li G, Jiang C, Yang B, Yang HJ, Xu HY, Huang LQ. Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf. Molecules 2014;19:1781-99.
  10. Blumenthal M, Goldberg A, Brinkmann J. Herbal medicine: expanded commission E monographs. Austin, TX: Integrative Medicine Communications; 2000. p. 170-7.
  11. Shan SM, Luo JG, Huang F, Kong LY. Chemical characteristics combined with bioactivity for comprehensive evaluation of Panax ginseng C.A. Meyer in different ages and seasons based on HPLC-DAD and chemometric methods. J Pharm Biomed Anal 2014;89:76-82. https://doi.org/10.1016/j.jpba.2013.10.030
  12. Kim GN, Lee JS, Song JH, Oh Ch, Kwon YI, Jang HD. Heat processing decreases Amadori products and increases total phenolic content and antioxidant activity of Korean Red ginseng. J Med Food 2010;13:1478-84. https://doi.org/10.1089/jmf.2010.1076
  13. Matsuura Y, Zheng Y, Takaku T, Kameda K, Okuda H. Isolation and physiological activities of new amino acid derivatives from Korean Red ginseng. J Ginseng Res 1994;18:204-11.
  14. Matsuura Y, Hirao Y, Yoshida S, Kunihiro K, Fuwa T, Kasai R, Tanaka O. Study on Red ginseng: new ginsenosides and a note on the occurrence of maltol. Chem Pharm Bull (Tokyo) 1984;32:4674-7. https://doi.org/10.1248/cpb.32.4674
  15. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwark YS. Characterization of Korean Red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:382-91.
  16. Shibata S, Fujita M, Itowa H, Tanaka O, Ishii T. The structure of panaxadiol, a sapogenin of ginseng. Tetrahedron Lett 1962;10:419-22.
  17. Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Panaxadiol, a sapogenin of ginseng roots (1). Chem Pharm Bull (Tokyo) 1963;11:759-76. https://doi.org/10.1248/cpb.11.759
  18. Shibata S, Tanaka O, Nagai M, Ishii T. Studies of the constituents of Japanese and Chinese crude drugs, XII. a sapogenin of ginseng root (2). Chem Pharm Bull (Tokyo) 1963;11:762-5. https://doi.org/10.1248/cpb.11.762
  19. Shibata S, Tanaka O, Soma K, Iita Y, Ando T, Nakamura H. Studies on saponins and sapogenins of ginseng. The structure of panaxatriol. Tetrahedron Lett 1965;3:207-13.
  20. Shibata S, Tanaka T, Ando T, Sado M, Tsushima S, Ohsawa T. Chemical studies on oriental plant drugs (XIV). Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem Pharm Bull (Tokyo) 1966;14:595-600. https://doi.org/10.1248/cpb.14.595
  21. Tanaka O, Nagai M, Ohsawa T, Tanaka N, Shibata S. Stereochemistry of protopanaxadiol. Tetrahedron Lett 1967;5:391-6. https://doi.org/10.1016/0040-4039(64)83003-3
  22. Nagai Y, Tanaka O, Shibata S. Structure of ginsenosede Rg1, a neutral saponin of ginseng root. Tetrahedron 1971;27:881-92. https://doi.org/10.1016/S0040-4020(01)92488-3
  23. Sanada S, Konso N, Shoji J, Tanaka O, Shibata S. Studies on the saponins of ginseng I. Structures of ginsenosides Ro, Rb1, Rb2 Rc and Rd. Chem Pharm Bull (Tokyo) 1974;22:421-8. https://doi.org/10.1248/cpb.22.421
  24. Kitagawa I. Chemical investigation of naturally occurring drug materials. Elucidation of scientific basis for traditional medicines and exploitation of new naturally occurring drugs. Yakugaku Zasshi 1992;112:1-4. https://doi.org/10.1248/yakushi1947.112.1_1
  25. Yuo CR, Yong JJ, Popovich DG. Isolation and characterization of bioactive polyacetylenes Panax ginseng Meyer roots. J Pharmaceut Biomed Anal 2017;139:148-55. https://doi.org/10.1016/j.jpba.2017.02.054
  26. Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T. Chemical studies on crude drug precession. I. On the constituents of ginseng radix rubra (1). Yakugaku Zasshi 1983;103:612. https://doi.org/10.1248/yakushi1947.103.6_612
  27. Hiromichi O, Lee SD, Yukinaga M, Yinan Z, Takeshi T, Kenji K, Kumi H, Kazuhiro O, Osamu T, Toshiie S. Biological activities of non-saponin compounds isolated from Korean Red ginseng. J Ginseng Res 1990;14:157-61.
  28. Horhammer L, Wagner H, Lay B. Contents of Panax ginseng root, preliminary report. Pharm Ztg 1961;106:1307-12.
  29. Takahashi M, Yoshikura M. [Studies on the components of Panax ginseng C.A. Meyer. V. On the structure of a new acetylene derivative "Panaxynol" (3). Synthesis of 1,9-(cis)-heptadecadiene-4,6-diyn-3-ol]. Yakugaku Zasshi 1966;86:1053-6. Article in Japanese. https://doi.org/10.1248/yakushi1947.86.11_1053
  30. Woo LK, Suh CS, Chang JJ, Shin KH. Presence of ${\alpha}$-pyrrolidone in ginseng extracts. Yakhak Hoeji 1969;13:121.
  31. Shim SC, Koh HY, Han BH. Polyacetylene compounds from panax ginseng CA Meyer. Bull Korean Chem Soc 1983;4:183-8.
  32. Han BH, Park MH, Han YN, Woo LK. Alkaloidal components of Panax ginseng. Arch Pharm Res 1986;9:21. https://doi.org/10.1007/BF02857702
  33. Ovodov YS, Solov'eva TF. Polysaccharides of panax ginseng. Chem Nat Compd 1966;2:243-5. https://doi.org/10.1007/BF00566981
  34. Tomoda M, Shimada K, Konno C, Sugiyama K, Hikino H. Partial structure of panaxan A, a hypoglycaemic glycan of Panax ginseng roots. Planta Med 1984;50:436-8. https://doi.org/10.1055/s-2007-969758
  35. Tomoda M, Shimada K, Konno C, Hikono H. Structure of panaxan B, A, hypoglycemic glycan of Panax ginseng roots. Phytochemistry 1985;24. 2431-23. https://doi.org/10.1016/S0031-9422(00)83057-5
  36. Konno C, Sugiyama K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycaemic activity of panaxans A, B, C, D and E, glycans of Panax ginseng roots. Planta Med 1984;50:434-6. https://doi.org/10.1055/s-2007-969757
  37. Konno C, Murakami M, Oshima Y, Hikino H. Isolation and hypoglycemic activity of panaxans Q, R, S, T and U, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:69-74. https://doi.org/10.1016/0378-8741(85)90030-3
  38. Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans M, N, O and P, glycans of Panax ginseng roots. Int J Crude Drug Res 1987;25:53-6. https://doi.org/10.3109/13880208709060912
  39. Hikino H, Oshima Y, Suzuki Y, Konno C. Isolation and hypoglycemic activity of panaxans F, G and H, glycans of Panax ginseng roots. Jpn J Pharmacogn 1985;39:331-3.
  40. Oshima Y, Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans I, J, K and L, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:255-9. https://doi.org/10.1016/0378-8741(85)90091-1
  41. Ng TB, Yeung HW. Hypoglycemic constituents of Panax ginseng. Gen Pharmacol 1985;16:549-52. https://doi.org/10.1016/0306-3623(85)90140-5
  42. Yang M, Wang BX, Jin YL, Wang Y, Cui ZY. Effects of ginseng polysaccharides on reducing blood glucose and liver glycogen. Zhongguo Yao Li Xue Bao 1990;11. 520-4. Chinese.
  43. Gao QP, Kiyohara H, Cyong JC, Yamada H. Chemical properties and anticomplementary activities of polysaccharide fractions from roots and leaves of Panax ginseng. Planta Med 1989;55:9-12. https://doi.org/10.1055/s-2006-961765
  44. Lee DK, Kameda K, Takaku T, Keizo S, Kumi HH, Kazuhiro O, Osamu T, Hiromichi O. Effect of acidic polysaccharide of red ginseng on lipolytic action of toxohormone-L, from cancerous ascites fluid. Korean J Ginseng Sci 1990;14:1-5.
  45. Kim YS, Kang KS, Kim SI. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: comparison of effects of neutral and acidic polysaccharide fraction. Arch Pharm Res 1990;13:330-7. https://doi.org/10.1007/BF02858168
  46. Kim YS, Kang KS, Kim SI. Effects of Ginseng components on immunotoxicity of cyclophosphamide. J Ginseng Res 1991;15:13-20.
  47. Park KM, Kim YS, Jeong TC, Joe CO, Shin HJ, Lee YH, Nam KY, Park JD. Nitric oxide is involved in the immunomodulating activities of acidic polysaccharide from Panax ginseng. Planta Medica 2001;67:122-6. https://doi.org/10.1055/s-2001-11508
  48. Kim YS, Park KM, Shin HJ, Song KS, Nam KY, Park JD. Anticancer activities of red ginseng acidic polysaccharide by activation of macrophages and natural killer cells. Yakhak Hoeji 2002;46:113-9.
  49. Shin HJ, Kim YS, Kwak YS, Song YB, Kyung JS, Wee JJ, Park JD. A further study on the inhibition of tumor growth and metastasis by Red ginseng acidic polysaccharide (RGAP). Natural Product Sciences 2004;10:284-8.
  50. Shin HJ, Kim YS, Kwak YS, Song YB, Kim YS, Park JD. Enhancement of antitumor effects of paclitaxel (Taxol) in combination with Red ginseng acidic polysaccharide (RGAP). Planta Med 2004;70:1-6. https://doi.org/10.1055/s-2004-815475
  51. Kwak YS, Kim SK, Shin HJ, Song YB, Park JD. Anticancer activities by combines treatment of red ginseng acidic polysaccharide (RGAP) and anticancer agents. J Ginseng Res 2003;27:47-51. https://doi.org/10.5142/JGR.2003.27.2.047
  52. Reyes AW, Simborio HL, Hop HT, Arayan LT, Min WG, Lee HJ, Rhee MH, Chang HH, Kim S. Inhibitory effect of red ginseng acidic polysaccharide from Korean Red ginseng on phagocytic activity and intracellular replication of Brucella abortus in RAW 264.7 cells. J Vet Sci 2016;17:315-21. https://doi.org/10.4142/jvs.2016.17.3.315
  53. Byeon SE, Lee J, Kim JH, Yang WS, Kwak YS, Kim SY, Choung ES, Rhee MH, Cho JY. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean Red ginseng. Mediators Inflamm 2012;2012:732860.
  54. Kwak YS, Kyung JS, Kim JS, Cho JY, Rhee MH. Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean Red ginseng. Biol Pharm Bull 2010;33:468-72. https://doi.org/10.1248/bpb.33.468
  55. Du XF, Jiang CZ, Wu CF, Won EK, Choung SY. Synergistic immunostimulating activity of pidotimod and red ginseng acidic polysaccharide against cyclophosphamide-induced immunosuppression. Arch Pharm Res 2008;31:1153-9. https://doi.org/10.1007/s12272-001-1282-6
  56. Choi HS, Kim KH, Sohn E, Park JD, Kim BO, Moon EY, Rhee DK, Pyo S. Red ginseng acidic polysaccharide (RGAP) in combination with IFN-gamma results in enhanced macrophage function through activation of the NF-kappaB pathway. Biosci Biotechnol Biochem 2008;72:1817-25. https://doi.org/10.1271/bbb.80085
  57. Kim H, Kim HW, Yu KW, Suh HJ. Polysaccharides fractionated from enzyme digests of Korean Red ginseng water extracts enhance the immunostimulatory activity. Int J Biol Macromol 2019;121. 913-20. Arch Pharm Res 2008;31:1153-1159. https://doi.org/10.1016/j.ijbiomac.2018.10.127
  58. Yin SY, Kim HJ, Kim HJ. A comparative study of the effects of whole red ginseng extract and polysaccharide and saponin fractions on influenza A (H1N1) virus infection. Biol Pharm Bull 2013;36:1002-7. https://doi.org/10.1248/bpb.b13-00123
  59. Park H, Cho BG, Lee MK. Nitrogen compounds of Korea ginseng and their physiological significance. J Ginseng Res 1990;14:317-31.
  60. Yonezawa M, Katoh N, Takeda A. Restoration of radiation injury by ginseng. II. Some properties of the radioprotective substances. J Radiat Res 1981;22:336-43. https://doi.org/10.1269/jrr.22.336
  61. Kim CM, Han GS. Radioprotective effects of ginseng proteins. Yakhak Hoeji 1985;29:246-52.
  62. Kim CM, Choi JE. Effects of radioprotective ginseng protein on UV induced sister chromatid exchanges. Arch Pharm Res 1988;11:93-8. https://doi.org/10.1007/BF02857711
  63. Kim CM, Choi MK. DNA repair enhancement by radioprotective ginseng protein fraction. Yakhak Hoeji 1992;36:449-54.
  64. Kim CM. Mechanisms of the radioprotective activity of ginseng protein fraction. J Ginseng Res 1990;14:279-83.
  65. Gstirner F, Vogt HJ. On peptides in White Korean ginseng. Arch Pharm Ber Dtsch Pharm Ges 1966;299:936-44. https://doi.org/10.1002/ardp.19662991108
  66. Ando T, Muraoka T, Yamasaki N, Okuda H. Preparation of anti-lipolytic substance from Panax ginseng. Planta Med 1980;38:18-23. https://doi.org/10.1055/s-2008-1074832
  67. Takaku T, Kameda K, Matsuura Y, Sekiya K, Okuda H. Studies on insulin-like substances in Korean Red ginseng. Planta Med 1990;56:27-30. https://doi.org/10.1055/s-2006-960877
  68. Matsuura Y, Zheng Y, Takaku T, Kameda K, Okuda H. Isolation and physiological activities of new amino acid derivatives from Korean Red ginseng. Korean J Ginseng Sci 1994;18:204-11.
  69. Matsuura Y, Zheng Y, Takaku T, Kameda K, Okuda H. Isolation and physiological activities of a new amino acid derivative from Korean Red ginseng. J Trad Med 1994;11:256-63.
  70. Hyun SH, Kim YS, Lee JW, Han CK, Park MS, So SH. Immunomodulatory effects of arginine-fructose-glucose enriched extracts of Red ginseng. Korean Soc J Food Nutr 2018;47:1-6. https://doi.org/10.3746/jkfn.2018.47.1.001
  71. Shao Y, Sun RH, Wang D, Li W, Zheng YN, Zhang J. The protective effect of arginyl-fructosyl-glucose against cyclophosphamide-induced immunosuppression in mice. Acta Nutr Sin 2015;3. 022.
  72. Ha KS, Jo SH, Kang BH, Apostolidis E, Lee MS, Jang HD, Kwon YI. In vitro and in vivo antihyperglycemic effect of 2 Amadori rearrangement compounds, arginyl-fructose and arginyl-fructosyl-glucose. J Food Sci 2011;76:H188-93. https://doi.org/10.1111/j.1750-3841.2011.02361.x
  73. Lee KH, Ha KS, Jo SH, Lee CM, Kim YC, Chung KH, Kwon YI. Effect of long-term dietary arginyl-fructose (AF) on hyperglycemia and HbA1c in diabetic db/db mice. Int J Mol Sci 2014;12(15):8352-9.
  74. Park SE, Kim OH, Kwak JH, Lee KH, Kwon YI, Chung KH, Lee JH. Antihyperglycemic effect of short-term arginyl-fructose supplementation in subjects with prediabetes and newly diagnosed type 2 diabetes: randomized, double-blinded, placebo-controlled trial. Trials 2015;16:521. https://doi.org/10.1186/s13063-015-1036-z
  75. Lee JS, Kim GN, Lee SH, Kim ES, Ha KS, Kwon YI, Jeong HS, Jang HD. In vitro and cellular antioxidant activity of arginyl-fructose and arginyl-fructosylglucose. Food Sci Biotechnol 2009;18:1505-10.
  76. Li RY, Zhang WZ, Yan XT, Hou JG, Wang Z, Ding CB, Liu WC, Zheng YN, Chen C. Arginyl-fructosyl-glucose, a major Maillard reaction product of Red ginseng, attenuates cisplatin-induced acute kidney injury by regulating nuclear factor ${\kappa}B$ and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. J Agric Food Chem 2019;67:5754-63. https://doi.org/10.1021/acs.jafc.9b00540
  77. Cho EJ, Piao XL, Jang MH, Baek SH, Kim HY, Kang KS, Kwon SW, Park JH. The effect of steaming on the free amino acid contents and antioxidant activity of Panax ginseng. Food Chem 2008;107:876-82. https://doi.org/10.1016/j.foodchem.2007.09.007
  78. Popovic PJ, Zeh 3rd HJ, Ochoa JB. Arginine and immunity. J Nutr 2007;137.1681S-6S. https://doi.org/10.1093/jn/137.6.1681S
  79. Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005;5:641-54. https://doi.org/10.1038/nri1668
  80. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009;37:153-60. https://doi.org/10.1007/s00726-008-0210-y
  81. Hiyama C, Miyai S, Yoshida H, Yamasaki K, Tanaka O. Application of highspeed liquid chromatography and dual wave-length thin-layer chromatograph-densitometry to analysis of crude drugs: nucleosides and free bases of nucleic acids in Ginseng roots. Yakugaku Zasshi 1978;98:1132-7. https://doi.org/10.1248/yakushi1947.98.8_1132
  82. Takatori K, Kato T, Ozaki M, Nakashima T. Choline in panax ginseng C. A. Meyer. Chem Pharm Bull (Tokyo) 1963;11:1342-3. https://doi.org/10.1248/cpb.11.1342
  83. Hou JP. The chemical constituents of Ginseng plants. Comp Med East West 1977;5:123-45.
  84. Woo LK, Nakamura Y, Donati L. Effect of Korean ginseng on the growth rate of cells. Arch Ital Patol Clin Tumori 1965;8:53-61.
  85. Cho CK, Kim TH, Yoo SY, Koh KH, Kim MS, Kim JH, Kim SH, Yoon HK, Ji YH. The effects of alkaloid fraction of Korean ginseng on the radiation-induced DNA strand breaks. J Korean Soc Ther Radiol 1995;13:113-20.
  86. Kim SH, Cho CK, Yoo SY, Koh KH, Yun HG, Kim TH. In vivo radioprotective activity of Panax ginseng and diethyldithiocarbamate. Vivo 1993;7:467-70.
  87. Yoo SY, Cho CK, Kim MS, Yoo HJ, Kim SH, Kim TH. An experimental study of radioprotective effect of ginseng alkaloid fraction on cellular damage. J Radiat Protection Res 1997;22:195.
  88. Poplawski Z, Wrobel JT, Glinka T. Panaxydol, a new polyacetyleneic epoxide from Panax ginseng roots. Phytochemistry 1980;19:1539. https://doi.org/10.1016/0031-9422(80)80214-7
  89. Dabrowski Z, Wrobel JT, Wojtasiewicz K. Structure of an acetylenic compound from Panax ginseng. Phytochemistry 1980;19:2464. https://doi.org/10.1016/S0031-9422(00)91051-3
  90. Kitagawa I, Taniyama T, Shibuya H, Noda T, Yoshikawa M. Chemical studies on crude drug processing. V. On the constituents of ginseng radix rubra (2): comparison of the constituents of white ginseng and red ginseng prepared from the same Panax ginseng root. Yakugaku Zasshi 1987;107:495-505. https://doi.org/10.1248/yakushi1947.107.7_495
  91. Ahn BZ, Kim SI. Relationship between structure and cytotoxic activity of panaxydol analogs against L1210 cells. Arch Pharm (Weinheim) 1988;321:61-3. Article in Germany. https://doi.org/10.1002/ardp.19883210203
  92. Kim SI, Lee YH, Kang KS. 10-Acetyl panaxytriol, a new cytotoxic polyacetylene from Panax ginseng. Yakhak Hoeji 1989;33:118-23.
  93. Kim YS, Shin II, Kim SI, Hahn DR. Effect of polyacetylene compounds from Panax ginseng on macromolecule synthesis of lymphoid leukemia L1210. Yakhak Hoeji 1989;32:137-40.
  94. Kim YS, Jin SH, Kim SI, Hahn DR. Studies on the mechanism of cytotoxicities of polyacetylenes against L1210 cell. Arch Pharm Res 1989;12:207. https://doi.org/10.1007/BF02855556
  95. Kim DC, Lee JY, In MJ, Chae HJ, Hwang YK, Hwang WI. Effects of polyacetylenes in ginseng on activity of enzymes related to post-translational modification of ras protein and effects of petroleum ether extract of ginseng on progression of cell cycle. J Ginseng Res 2001;25:156-61.
  96. Kim HY, Lee YH, Kim SI. Effects of polyacetylene compounds from Panax ginseng CA Meyer on $CCl_{4}$-induced lipid peroxidation in mouse liver. Toxicol Res 1988;4:13-22.
  97. Ahn BZ, Kim SI. [Relationship between structure and cytotoxic activity of panaxydol analogs against L1210 cells]. Arch Pharm (Weinheim) 1988;321:61-3. Article in German. https://doi.org/10.1002/ardp.19883210203
  98. Ryu JH, Jang SR, Lee SY, Lee HJ, Han YN. Inhibitors of nitric oxide synthesis from ginseng in activated macrophages. J Ginseng Res 1998;22:181-7.
  99. Hyun HC, Park JK, Nam KY, Park KH. Hypocholesterolemic effect of panaxydol in high cholesterol diet fed rats and mice. J Ginseng Res 2001;25:162-6.
  100. Yamazaki M, Hirakura K, Miyaichi Y, Imakura K, Kita M, Chiba K, Mohri T. Effect of polyacetylenes on the neurite outgrowth of neuronal culture cells and scopolamine-induced memory impairment in mice. Biol Pharm Bull 2001;24:1434-6. https://doi.org/10.1248/bpb.24.1434
  101. Choi SJ, Kim TH, Shin YK, Lee CS, Park M, Lee HS, Song JH. Effects of a polyacetylene from Panax ginseng on Na+ currents in rat dorsal root ganglion neurons. Brain Res 2008;1191:75-83. https://doi.org/10.1016/j.brainres.2007.11.047
  102. Park JK, Kim SI. Inhibition of the formation of adducts between metabolites of benzo(a)pyrene and DNA by Panaxydol in vivo and in vitro. J Ginseng Res 1989;13:42-8.
  103. Matsunaga H, Katano M, Yamamoto H, Mori M, Takata K. Studies on the panaxytriol of Panax ginseng C. A. Meyer. Isolation, determination and antitumor activity. Chem Pharm Bull (Tokyo) 1989;37:1279-81. https://doi.org/10.1248/cpb.37.1279
  104. Matsunaga H, Katano M, Yamamoto H, Fujito H, Mori M, Takata K. Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem Pharm Bull (Tokyo) 1990;38:3480-2. https://doi.org/10.1248/cpb.38.3480
  105. Matsunaga H, Katano M, Saita T, Yamamoto H, Mori M. Potentiation of cytotoxicity of mitomycin C by a polyacetylenic alcohol, panaxytriol. Cancer Chemother Pharmacol 1994;33:291-7. https://doi.org/10.1007/BF00685902
  106. Lee FC, Park JK, Ko JH, Lee JS, Kim KY, Kim CK. Effects of panax ginseng extract on the benzo(a)pyrene metabolizing enzyme system. Drug Chem Toxicol 1987;10:227. https://doi.org/10.3109/01480548709042984
  107. Park JK, Jin SH. The toxicological parameter assessment in experimental animals for various dosages of polyacetylene compounds. J Ginseng Res 1989;13:49-55.
  108. Choi SG, Heo MY. Anticlastogenic effect of petroleum ether extract of Panax ginseng against carcinogen-induced micromuclei in mice. Yakhak Hoeji 1992;36:334-40.
  109. Han BH, Park MH, Han YN. Studies on the antioxidant components of Korean ginseng (III). Arch Pharm Res 1981;4:53-8. https://doi.org/10.1007/BF02856441
  110. Han BH, Park MH, Han YN. Chemical and biochemical studies on nonsaponin constituents of Korean ginseng. J Ginseng Res 1992;16:228-34.
  111. Matsuura H, Hirao Y, Yoshida S, Kunihiro K, Fuwa T, Kasai R, Tanaka O. Study of red ginseng: new glucosides and a note on the occurrence of maltol. Chem Pharm Bull (Tokyo) 1984;32:4674-7. https://doi.org/10.1248/cpb.32.4674
  112. Li XG. Studies on the transforming mechanism of amino acid components in the course of ginseng processing. Korean J Ginseng Sci 1992;16:64-7.
  113. Song Y, Hong S, Iizuka Y, Kim CY, Seong GJ. The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells. Korean J Ophthalmol 2015;29:58-65. https://doi.org/10.3341/kjo.2015.29.1.58
  114. Liu W, Wang Z, Hou JG, Zhou YD, He YF, Jiang S, Wang YP, Ren S, Li W. The liver protection effects of maltol, a flavoring agent, on carbon tetrachlorideinduced acute liver injury in mice via inhibiting apoptosis and inflammatory response. Molecules 2018;23(9).
  115. Han Y, Xu Q, Hu JN, Han XY, Li W, Zhao LC. Maltol, a food flavoring agent, attenuates acute alcohol-induced oxidative damage in mice. Nutrients 2015;7:682-96. https://doi.org/10.3390/nu7010682
  116. Kang KS, Ham J, Kim YJ, Park JH, Cho EJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. J Ginseng Res 2013;37:379-88. https://doi.org/10.5142/jgr.2013.37.379
  117. Kang KS, Yamabe N, Kim HY, Yokozawa T. Role of maltol in advanced glycation end products and free radicals: in-vitro and in-vivo studies. J Pharm Pharmacol 2008;60:445-52. https://doi.org/10.1211/jpp.60.4.0006
  118. Yokozawa T, Kang KS, Yamabe N, Kim HY. Therapeutic potential of heatprocessed Panax ginseng with respect to oxidative tissue damage. Drug Discov Ther 2007;1:30-44.
  119. Kang KS, Kim HY, Baek SH, Yoo HH, Park JH, Yokozawa T. Study on the hydroxyl radical scavenging activity changes of ginseng and ginsenoside-Rb2 by heat processing. Biol Pharm Bull 2007;30:724-8. https://doi.org/10.1248/bpb.30.724
  120. Kang KS, Yokozawa T, Kim HY, Park JH. Study on the nitric oxide scavenging effects of ginseng and its compounds. J Agric Food Chem 2006;54:2558-62. https://doi.org/10.1021/jf052952
  121. Kang KS, Kim HY, Pyo JS, Yokozawa T. Increase in the free radical scavenging activity of ginseng by heat-processing. Biol Pharm Bull 2006;29:750-4. https://doi.org/10.1248/bpb.29.750
  122. Kang KS, Tanaka T, Cho EJ, Yokozawa T. Evaluation of the peroxynitrite scavenging activity of heat-processed ginseng. J Med Food 2009;12:124-30. https://doi.org/10.1089/jmf.2007.0646
  123. Mi XJ, Hou JG, Jiang Liu Z, Tang S, Liu XX, Wang YP, Chen C, Wang Z, Li W. Maltol mitigates thioacetamide-induced liver fibrosis through TGF-${\beta}1$-mediated activation of PI3K/Akt signaling pathway. J Agric Food Chem 2019;67:1392-401. https://doi.org/10.1021/acs.jafc.8b05943
  124. Jiang R, Xu XH, Wang K, Yang XZ, Bi YF, Yan Y, Liu JZ, Chen XN, Wang ZZ, Guo Xl. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit ${\alpha}$-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells. J Ethnopharmacol 2017;208:149-56. https://doi.org/10.1016/j.jep.2017.07.004
  125. Kim MW, Park JD. Studies on the volatile flavor components of fresh ginseng. J Ginseng Res 1984;8:22-31.
  126. Yoshihara K, Hirose Y. The sesquiterpenes of ginseng. Bull Chem Soc Jpn 1975;48:2078. https://doi.org/10.1246/bcsj.48.2078
  127. Sohn HJ, Heo JN, Nho KB, Kim MW. A comparison of the composition of the major headspace volatiles between the Korean ginseng and the Chinese ginseng. J Ginseng Res 1997;21:196-200.
  128. Park MH, Sohn HJ, Jeon BS, Kim NM, Park CK, Kim AK, Kim KC. Studies on flavor components and organoleptic properties in roasted red Ginseng Marc. J Ginseng Res 1999;23:211-6.
  129. Chung BS. Studies on the oil soluble constituents of Korean ginseng -Part 1. On the composition of ginseng sterols. Korean J Pharmacog 1974;5:173-7.
  130. Shon MS, Kim JS, Song JH, Jang HD, Kim GN. Anti-oxidant activity of oil extracted from Korean Red ginseng and its moisturizing function. Kor J Aesthet Cosmetol 2013;11:489-94.
  131. Bak MJ, Jun MR, Jeong WS. Antioxidant and hepatoprotective effects of the Red ginseng essential oil in H2O2-treated HepG2 cells and $CCl_{4}$-treated mice. Int J Mol Sci 2012;13:2314-30. https://doi.org/10.3390/ijms13022314
  132. Bak MJ, Truong VL, Ko SY, Nguyen XN, Jun M, Hong SG, Lee JW, Jeong WS. Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells. J Ginseng Res 2016;40:423-30. https://doi.org/10.1016/j.jgr.2016.07.003
  133. Bak MJ, Hong SG, Lee JW, Jeong WS. Red ginseng marc oil inhibits iNOS and COX-2 via $NF{\kappa}B$ and p38 pathways in LPS-stimulated RAW 264.7 macrophages. Molecules 2012;17:13769-86. https://doi.org/10.3390/molecules171213769
  134. Lee S, Youn K, Jeong WS, Ho CT, Jun M. Protective effects of Red ginseng oil against $A{\beta}25$-35-induced neuronal apoptosis and inflammation in PC12 cells. Int J Mol Sci 2017;18(10):2218. https://doi.org/10.3390/ijms18102218
  135. Reyes AWB, Hop HT, Arayan LT, Huy TXN, Park SJ, Kim KD, Min W, Lee HJ, Rhee MH, Kwak YS. The host immune enhancing agent Korean Red ginseng oil successfully attenuates Brucella abortus infection in a murine model. J Ethnopharmacol 2017;198:5-14. https://doi.org/10.1016/j.jep.2016.12.026
  136. Truong VL, Bak MJ, Lee C, Jun M, Jeong WS. Hair regenerative mechanisms of Red ginseng oil and its major components in the testosterone-induced delay of anagen entry in C57BL/6 mice. Molecules 2017;8(9):E1505. 22.
  137. Lee MS, Lee JH, Kwon TO, Namkoong SB. Increment of germanium contents in Angelica keiskei Koidz. and Panax Ginseng G.A. Meyer by in vitro propagation. Korean J Medical Crop Sci 1995;3:251-8.
  138. Han BH, Huh BH, Lee IR. Lignan components from Panax ginseng C. A. Meyer. J Ginseng Res 1990;14:217-20.

Cited by

  1. Red ginseng protects against cisplatin-induced intestinal toxicity by inhibiting apoptosis and autophagy via the PI3K/AKT and MAPK signaling pathways vol.11, pp.5, 2020, https://doi.org/10.1039/d0fo00469c
  2. Antioxidant and Anti-inflammatory Effects of Ginseng Berry Ethanol Extracts as a Cosmetic Ingredient vol.18, pp.3, 2020, https://doi.org/10.20402/ajbc.2020.0052
  3. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, 2021, https://doi.org/10.1155/2021/8858006
  4. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial vol.45, pp.1, 2020, https://doi.org/10.1016/j.jgr.2020.08.003
  5. The Effects of New Zealand Grown Ginseng Fractions on Cytokine Production from Human Monocytic THP-1 Cells vol.26, pp.4, 2021, https://doi.org/10.3390/molecules26041158
  6. Inhibition of angiotensin II-induced hypertrophy and cardiac dysfunction by North American ginseng (Panax quinquefolius) vol.99, pp.5, 2020, https://doi.org/10.1139/cjpp-2020-0480
  7. Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via acti vol.45, pp.3, 2020, https://doi.org/10.1016/j.jgr.2020.08.005
  8. Ginsenoside Rh1 Exerts Neuroprotective Effects by Activating the PI3K/Akt Pathway in Amyloid-β Induced SH-SY5Y Cells vol.11, pp.12, 2021, https://doi.org/10.3390/app11125654
  9. Effect of Korean Red Ginseng on Plasma Ceramide Levels in Postmenopausal Women with Hypercholesterolemia: A Pilot Randomized Controlled Trial vol.11, pp.7, 2020, https://doi.org/10.3390/metabo11070417
  10. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections vol.26, pp.13, 2020, https://doi.org/10.3390/molecules26134095
  11. Alternative medicine and herbal remedies in the treatment of erectile dysfunction: A systematic review vol.19, pp.3, 2021, https://doi.org/10.1080/2090598x.2021.1926753
  12. A network pharmacology approach to explore the potential role of Panax ginseng on exercise performance vol.25, pp.3, 2020, https://doi.org/10.20463/pan.2021.0018
  13. Enhanced biotransformation of the minor ginsenosides in red ginseng extract by Penicillium decumbens β-glucosidase vol.153, 2022, https://doi.org/10.1016/j.enzmictec.2021.109941
  14. Enhanced biotransformation of the minor ginsenosides in red ginseng extract by Penicillium decumbens β-glucosidase vol.153, 2022, https://doi.org/10.1016/j.enzmictec.2021.109941
  15. Characteristics of Black Ginseng (Panax ginseng C.A. Mayer) Production Using Ginseng Stored at Low Temperature after Harvest vol.11, pp.2, 2020, https://doi.org/10.3390/metabo11020098