DOI QR코드

DOI QR Code

Genetic diversity among cultivated and wild Panax ginseng populations revealed by high-resolution microsatellite markers

  • Jang, Woojong (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jang, Yeeun (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Nam-Hoon (Phyzen Genomics Institute) ;
  • Waminal, Nomar Espinosa (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Young Chang (Ginseng Research Division, National Institution of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Jung Woo (Ginseng Research Division, National Institution of Horticultural and Herbal Science, Rural Development Administration) ;
  • Yang, Tae-Jin (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2018.10.08
  • Accepted : 2019.05.20
  • Published : 2020.07.15

Abstract

Background: Ginseng (Panax ginseng Meyer) is one of the world's most valuable medicinal plants with numerous pharmacological effects. Ginseng has been cultivated from wild mountain ginseng collections for a few hundred years. However, the genetic diversity of cultivated and wild ginseng populations is not fully understood. Methods: We developed 92 polymorphic microsatellite markers based on whole-genome sequence data. We selected five markers that represent clear allele diversity for each of their corresponding loci to elucidate genetic diversity. These markers were applied to 147 individual plants, including cultivars, breeding lines, and wild populations in Korea and neighboring countries. Results: Most of the 92 markers displayed multiple-band patterns, resulting from genome duplication, which causes confusion in interpretation of their target locus. The five high-resolution markers revealed 3 to 8 alleles from each single locus. The proportion of heterozygosity (He) ranged from 0.027 to 0.190, with an average of 0.132, which is notably lower than that of previous studies. Polymorphism information content of the markers ranged from 0.199 to 0.701, with an average of 0.454. There was no statistically significant difference in genetic diversity between cultivated and wild ginseng groups, and they showed intermingled positioning in the phylogenetic relationship. Conclusion: Ginseng has a relatively high level of genetic diversity, and cultivated and wild groups have similar levels of genetic diversity. Collectively, our data demonstrate that current breeding populations have abundant genetic diversity for breeding of elite ginseng cultivars.

Keywords

References

  1. Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ. The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot 2001;26(1):144-67.
  2. Yun TK. Brief introduction of Panax ginseng C.A. Meyer. J Korean Med Sci. 2001;16:S3-5. Suppl. https://doi.org/10.3346/jkms.2001.16.s.s3
  3. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38(3):161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  4. Kang S, Min H. Ginseng, the 'immunity boost': the effects of Panax ginseng on immune system. J Ginseng Res 2012;36(4):354-68. https://doi.org/10.5142/jgr.2012.36.4.354
  5. Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008;22(3):222-6. https://doi.org/10.1097/WAD.0b013e31816c92e6
  6. Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. Journal of Korean Medical Science 2001;16:S28-37. https://doi.org/10.3346/jkms.2001.16.s.s28
  7. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37(1):1-7. https://doi.org/10.5142/jgr.2013.37.1
  8. Waminal NE, Park HM, Ryu KB, Kim JH, Yang TJ, Kim HH. Karyotype analysis of Panax ginseng CA Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution. Comp Cytogenet 2012;6(4):425-41. https://doi.org/10.3897/CompCytogen.v6i4.3740
  9. Waminal NE, Choi HI, Kim NH, Jang W, Lee J, Park JY, Kim HH, Yang TJ. A refined Panax ginseng karyotype based on an ultra-high copy 167-bp tandem repeat and ribosomal DNAs. J Ginseng Res 2017;41(4):469-76. https://doi.org/10.1016/j.jgr.2016.08.002
  10. Choi HI, Waminal NE, Park HM, Kim NH, Choi BS, Park M, Choi D, Lim YP, Kwon SJ, Park BS, et al. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J 2014;77(6):906-16. https://doi.org/10.1111/tpj.12441
  11. Jang W, Kim N-H, Lee J, Waminal NE, Lee S-C, Jayakodi M, Choi H-I, Park JY, Lee J-E, Yang T-J. A glimpse of Panax ginseng genome structure revealed from ten BAC clone sequences obtained by SMRT sequencing platform. Plant Breed Biotech 2017;5(1):25-35. https://doi.org/10.9787/PBB.2017.5.1.25
  12. Jayakodi M, Lee SC, Park HS, Jang W, Lee YS, Choi BS, Nah GJ, Kim DS, Natesan S, Sun C, et al. Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots. J Ginseng Res 2014;38(4):278-88. https://doi.org/10.1016/j.jgr.2014.05.008
  13. Choi HI, Kim NH, Lee J, Choi BS, Kim KD, Park JY, Lee SC, Yang TJ. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags. Genet Resour Crop Ev 2013;60(4):1377-87. https://doi.org/10.1007/s10722-012-9926-3
  14. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29(9):1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  15. Kim NH, Jayakodi M, Lee SC, Choi BS, Jang W, Lee J, Kim HH, Waminal NE, Lakshmanan M, van Nguyen B, et al. Genome and evolution of the shaderequiring medicinal herb Panax ginseng. Plant Biotechnol J 2018;16(11):1904-17. https://doi.org/10.1111/pbi.12926
  16. Lee J, Waminal NE, Choi HI, Perumal S, Lee SC, Nguyen VB, Jang W, Kim NH, Gao LZ, Yang TJ. Rapid amplification of four retrotransposon families promoted speciation and genome size expansion in the genus Panax. Sci Rep 2017;7(1):9045. https://doi.org/10.1038/s41598-017-08194-5
  17. Choi HI, Kim NH, Kim JH, Choi BS, Ahn IO, Lee JS, Yang TJ. Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res 2011;35(4):399-412. https://doi.org/10.5142/jgr.2011.35.4.399
  18. Kim NH, Choi HI, Ahn IO, Yang TJ. EST-SSR marker sets for practical authentication of all nine registered ginseng cultivars in Korea. J Ginseng Res 2012;36(3):298-307. https://doi.org/10.5142/jgr.2012.36.3.298
  19. Gepts P. The use of molecular and biochemical markers in crop evolution studies. Evol Biol 1993;27:51-94.
  20. Morgante M, Olivieri AM. Pcr-amplified microsatellites as markers in plant genetics. Plant J 1993;3(1):175-82. https://doi.org/10.1046/j.1365-313X.1993.t01-9-00999.x
  21. Lee YS, Park HM, Kim NH, Waminal NE, Kim YJ, Lim KB, Baek JH, Kim HH, Yang TJ. Phylogenetic relationship of 40 species of genus Aloe L. and the origin of an allodiploid species revealed by nucleotide sequence variation in chloroplast intergenic space and cytogenetic in situ hybridization. Genet Resour Crop Ev 2016;63(2):235-42. https://doi.org/10.1007/s10722-015-0243-5
  22. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 2005;111(8):1514-23. https://doi.org/10.1007/s00122-005-0080-6
  23. Izzah NK, Lee J, Perumal S, Park JY, Ahn K, Fu DH, Kim GB, Nam YW, Yang TJ. Microsatellite-based analysis of genetic diversity in 91 commercial Brassica oleracea L. cultivars belonging to six varietal groups. Genet Resour Crop Ev 2013;60(7):1967-86. https://doi.org/10.1007/s10722-013-9966-3
  24. Characteristics of new cultivars in Panax ginseng CA Meyer. In: Lee S-S, Lee JH, Ahn I-O, editors. Proceedings of the ginseng society conference. The Korean Society of Ginseng; 2005.
  25. Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, Cho EG, Park YJ. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C. A. Meyer). Conserv Genet 2007;8(6):1507-9. https://doi.org/10.1007/s10592-007-9284-4
  26. Joh HJ, Kim N-H, Jayakodi M, Jang W, Park JY, Kim YC. In J-G, Yang T-J. Authentication of golden-berry P. ginseng cultivar 'Gumpoong'from a landrace 'Hwangsook'based on pooling method using chloroplast-derived markers. Plant Breed Biotech 2017;5(5):16-24. https://doi.org/10.9787/PBB.2017.5.1.16
  27. Allen GC, Flores-Vergara MA, Krasnyanski S, Kumar S, Thompson WF. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 2006;1(5):2320-5. https://doi.org/10.1038/nprot.2006.384
  28. Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 1983;19(2):153-70. https://doi.org/10.1007/BF02300753
  29. Liu KJ, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 2005;21(9):2128-9. https://doi.org/10.1093/bioinformatics/bti282
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33(7):1870-4. https://doi.org/10.1093/molbev/msw054
  31. Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 2003;106(3):411-22. https://doi.org/10.1007/s00122-002-1031-0
  32. Song QJ, Jia GF, Zhu YL, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 2010;50(5):1950-60. https://doi.org/10.2135/cropsci2009.10.0607
  33. Kim J, Jo BH, Lee KL, Yoon ES, Ryu GH, Chung KW. Identification of new microsatellite markers in Panax ginseng. Mol Cells 2007;24(1):60-8.
  34. Jo BH, Suh DS, Cho EM, Kim J, Ryu GH, Chung KW. Characterization of polymorphic microsatellite loci in cultivated and wild Panax ginseng. Genes Genom 2009;31(2):119-27. https://doi.org/10.1007/BF03191145
  35. Dan NV, Ramchiary N, Choi SR, Uhm TS, Yang TJ, Ahn IO, Lim YP. Development and characterization of new microsatellite markers in Panax ginseng (CA Meyer) from BAC end sequences. Conserv Genet 2010;11(3):1223-5. https://doi.org/10.1007/s10592-009-9924-y
  36. Hildebrand CE, David C, Torney C, Wagner P. Informativeness of polymorphic DNA markers. Sausalito: The human genome project: deciphering the blueprint of heredity University Science Books; 1994. p. 100-2.
  37. Kim NH, Choi HI, Kim KH, Jang W, Yang TJ. Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tag-simple sequence repeat bands in Panax ginseng Meyer. J Ginseng Res 2014;38(2):130-5. https://doi.org/10.1016/j.jgr.2013.12.005
  38. Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 2007;173(6):638-49. https://doi.org/10.1016/j.plantsci.2007.08.010
  39. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, HeW, Qin N, Wang B, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 2010;42(12):1053-9. https://doi.org/10.1038/ng.715
  40. Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015;2015:431487. https://doi.org/10.1155/2015/431487
  41. Kwon W, Lee M, Lee J. Characteristics of flowering and fruiting in new varieties and lines of Panax ginseng CA Meyer. J Ginseng Res 2001;25(25):41-4.

Cited by

  1. Genetic Composition of Korean Ginseng Germplasm by Collection Area and Resource Type vol.10, pp.11, 2020, https://doi.org/10.3390/agronomy10111643
  2. Complete Mitochondrial Genome and a Set of 10 Novel Kompetitive Allele-Specific PCR Markers in Ginseng (Panax ginseng C. A. Mey.) vol.10, pp.12, 2020, https://doi.org/10.3390/agronomy10121868
  3. Use of Inter Simple Sequence Repeat (ISSR) Markers to Assess the Genetic Diversity of Panax bipinnatifidus Seem. Collected from Northern Vietnam vol.57, pp.3, 2020, https://doi.org/10.1134/s1022795421030091
  4. Global Trends in Research on Wild-Simulated Ginseng: Quo Vadis? vol.12, pp.6, 2021, https://doi.org/10.3390/f12060664