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RF Heating of Implants in MRI: 
Electromagnetic Analysis and Solutions 

INTRODUCTION

Recently, a magnetic resonance imaging (MRI) has become an indispensable medical 
imaging device. Unlike a computed tomography (CT) system, the MRI has an advantage 
of acquiring an anatomical image using a magnetic field without tissue ionizing. 
However, as a patient taking MRI scan is exposed to a much stronger electromagnetic 
field than in everyday life, there is a risk of unwanted electromagnetic reactions in the 
human body. Except for an interaction with a static magnetic field (B0) generated by a 
main magnet, RF heating, increase of the tissue temperature due to a RF magnetic field 
(B1) transmitted by RF coil, is the major concern. In this review article, some studies 
related to the RF heating in the MRI are extensively analyzed. Especially, researches 
regarding the artificial products such as implantable medical devices (IMDs) and tattoos 
which aggravate the RF heating are mainly discussed in the article.

Safety Guidelines and Concerns During MR Examination

To obtain an anatomical image through a signal contrast depending on the tissues, 
the patient is exposed to strong magnetic fields such as static field B0 and time-varying 
field B1 during the MRI scan. One of the main risks by the B0 field is a magnetic pulling. 
The ferromagnetic materials such as steel and nickel are highly attracted toward the 
MR bore when placed in the region of the strong magnetic field with strong magnetic 
field gradients (1-4). Therefore, carrying the products which could be highly affected by 
the magnetic field are strictly prohibited.

When the B1 field is applied to a patient, some part of RF energy is deposited in 
the human body and triggers the temperature rise when a quantity of the absorbed 

This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License 
(http://creativecommons.org/licenses/
by-nc/4.0/) which permits unrestricted 
non-commercial use, distribution, and 
reproduction in any medium, provided 
the original work is properly cited.

Received: March 1, 2020
Revised: March 29, 2020
Accepted: April 6, 2020

Correspondence to: 
Hyoungsuk Yoo, Ph.D. 
Department of Biomedical 
Engineering, Hanyang University, 
222, Wangsimni-ro, Seongdong-
gu, Seoul 04763, Korea.
Tel. +82-2-2220-2306
Fax. +82-2-2296-5943
E-mail: hsyoo@hanyang.ac.kr 

Copyright © 2020 Korean Society 
of Magnetic Resonance in 
Medicine (KSMRM)

iMRI 2020;24:67-75 https://doi.org/10.13104/imri.2020.24.2.67

Review Article 

When a patient takes an MRI scan, the patient has a risk of unexpected injuries due 
to the intensive electromagnetic (EM) field. Among the injuries, the tissue heating 
by the time-varying EM field is one of the main issues. Since an implanted artificial 
structure with a conductive material aggravates the heating effect, lots of studies 
have been conducted to investigate the effect around the implants. In this review 
article, a mechanism of RF heating around the implants and related studies are 
comprehensively investigated. 

Keywords: Radio Frequency; Heating; Implants; RF coils

pISSN 2384-1095
eISSN 2384-1109

Youngdae Cho, Hyoungsuk Yoo
Department of Biomedical Engineering, Hanyang University, Seoul, Korea

http://crossmark.crossref.org/dialog/?doi=10.13104/imri.2020.24.2.67&domain=pdf&date_stamp=2020-07-01


www.i-mri.org68

RF Heating of Implants in MRI: Analysis and Solutions | Youngdae Cho, et al.

energy exceeds the limit which can be controlled by the 
thermoregulation (4-7). To assess the thermal effect due 
to the exposure of electromagnetic waves, a normalized 
rate of energy absorbed in the tissues called SAR (specific 
absorption rate) is evaluated. SAR within the tissue located 
at point r = (x, y, z) can be calculated by Eq. [1] as

SAR =
σ(r)|E(r)|2

2ρ
 [1],

where σ is the electrical conductivity (S/m), E is the 
electric field (V/m), and ρ is the mass density of the tissue 
(kg/m3). Since SAR is proportional to an intensity of the RF 
source, the total power of the transmit electromagnetic 
field should be scaled to keep the SAR below the limit 
regulated by the international electrotechnical commission 
(IEC) as given in Table 1 (8, 9).

Even though the limit varies depending on the operating 
mode, the values based on the normal mode is mainly 
considered to be safe for most of the patients including 
those with lower thermoregulatory capacity. Local SAR of 
the partial body listed on the table is averaged over the 
mass of 10 g.

MRI-Induced RF Heating at Implantable Medical 
Devices

An implantable medical devices (IMD) is inserted inside a 
human body semi-permanently. The IMD can be classified 
into passive type and active type. The passive implants 
compensate for the insufficient physical function of an 
organ inside of the human body e.g., hip implant. While, 
the active implants restore some functions of the body 
parts or relieve a pain through electrical stimulation. Unlike 
some on-body worn decorative accessories, it is practically 
impossible to exclude the IMDs from the patients during the 

MRI scan. Therefore, a metallic part of the devices should 
be made with a paramagnetic or diamagnetic metal having 
low magnetic susceptibility to prevent the magnetic pulling 
and an image distortion due to the implantable device (10, 
11). 

According to the Maxwell-Faraday equation (Eq. [2]) 
shown as follows 

∮CE · dl = -∬S
∂B

· dS,
∂t

	 [2]

voltage around the stationary closed loop c is equal to 
the rate of change in the magnetic flux density B over time 
integrated over the surface enclosed by the loop S. During 
the MRI scan, a RF pulse called B1 is applied to a human 
body to induce spin excitations of target nuclei. The time-
varying magnetic pulse generates eddy currents at the 
metal plate of the implants as predicted by the Eq. [2]. The 
eddy currents can heat up the metal plate by joule heating 
or the tissues by flowing itself to the tissues in contact with 
the implants (12-17). Especially, a structure of a conductive 
wire such as a lead of artificial cardiac pacemaker (PM) 
and deep brain stimulator (DBS) acts like an antenna 
which significantly absorbs external RF energy to increase 
heating (18-30). The currents generated at the whole wire 
flow along the path and are accumulated at the tip of the 
lead wire. Since the excessive amounts of energy by the 
unwanted currents are transferred into the contiguous 
tissues, the risk of RF heating increases significantly that 
electrode dropout and a permanent tissue damage can 
occur.

For the reason mentioned above, the implanted medical 
wires are considered as the major risk of RF heating in the 
MRI and most of the studies of MRI-induced RF heating are 
extensively carried out on this issue. To analyze the effect 
and develop a mitigation method of RF heating around the 
lead, a numerical simulation based on some electromagnetic 
solvers is an alternative and widely used technique to cover 
the infeasibility of clinical trials due to the safety issues 
(30-34). In the following chapter, procedures of the EM 
and thermal simulations are briefly explained. In addition, 
studies to reduce the RF heating and validate the simulated 
results with the measurements are also introduced. 

1. Numerical Analysis of RF Heating
For  the numerical  analys is  to understand the 

electromagnetic phenomenon inside of the human 
body, commercial simulation softwares were developed. 

Table 1. IEC SAR standards for MR scanning 

Operating mode Normal 1st-level controlled 2nd-level controlled

Whole Body SAR 2 4 >4

Head SAR 3.2 3.2 >3.2

Local 
SAR

Head 10 20 >20

Trunk 10 20 >20

Extremities 20 40 >40

IEC = international electrotechnical commission; SAR = specific absorption rate 
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Depending on the numerical method to solve problems, 
for example, COMSOL and ANSYS HFSS using finite 
element method (FEM), Sim4life and XFdtd using finite-
difference time-domain method (FDTD), and CST using finite 
integration method (FIM) are widely used. To analyze a 
target object, the whole object is decomposed into smaller 
parts termed as finite elements. Depending on the shape 
of the element, a voxel and a mesh is usually used for the 
cubic and triangular shapes, respectively. By assembling 
the solutions of the simplified differential equations 
based on the Maxwell equations from each element 
region, the electromagnetic effect in whole object can 
be approximately predicted.  Based on the data obtained 
from EM simulations, the amount of temperature rise by 
RF exposure is calculated by thermal simulation based on 
the bio-heat equation (35-37).  The formula (Eq. [3]) is 
expressed as 

ρc
dT

=∇	·	(k∇T)+ρQ+ρS-ρbcbρw(T-Tb) dt
 [3]

where, Q is the metabolic heat generation rate, w is the 
perfusion rate, c is the heat capacity, S is SAR, T is the 
current temperature of the tissue, and k is the thermal 
conductivity. The symbols with subscript b represents the 
coefficients of the blood. The term 'ρbcbρw' is referred as 
the heat-transfer rate. Except the value of T, all parameters 
in the formula are tissue-specific quantities which are 
assigned automatically when the realistic human phantom 
is provided.  

2. Modeling for Simulation
Regardless of the type of the simulation, making a 

realistic 3-D computer aided design (CAD) of the target 
object is the first step to minimize an error during the 
approximation. The studies in the early stage used a simple-
shaped single-layered human phantom with uniform 
material properties due to the difficulty in realistic human 
body modeling. Fortunately, current softwares based 
on FDTD provide their own human models like Virtual 
Population (ViP) models of IT’IS Foundation, Switzerland and 
CST Voxel Family by Dassault Systems, France. Thanks to the 
models composed of various tissues having different electric 
properties, reliability of the numerical study related to RF 
heating has been increased (38). 

As we mentioned above, a designed model in the 
simulation domain are divided into the several finite 
elements for a calculation based on the electromagnetic 

equations. An accuracy of the simulated result is directly 
affected by setting the size of an element called ‘grid’. 
Although a tightly spaced grid in the target objects 
is essential to get the result with higher reliability, 
the compactness of each grid below a certain volume 
exceeding the computing capacity of the users cannot 
be assigned. During the numerical simulations, the 
components of computing hardware mainly influence the 
calculation efficiency.  Features of CPU such as a clock 
rate and the number of cores are significantly related to a 
computation time. The size of RAM determines the speed 
of the simulation processed as a single task. Since the 
required space and the required time for the simulation are 
proportional to the number of the total elements, it is very 
important to set up a balance in the trade-off of gridding 
which satisfies both short computation time and small 
approximation error. 

Figure 1 shows depicted models of a human body and 
an implanted lead wire in the FDTD-based simulation 
depending on the different gridding size. Compared to the 
human model in Figure 1a, the lead model in Figure 1b has 
smaller and complicated structure with the dimensions 
in millimeters that accuracy of the results varies very 
sensitively by the size of grid. Since the lead wire is the 
major component among other IMDs to cause RF heating 
in MRI, setting its grid with extremely fine size is essential 
in the simulation for higher accuracy, even if a massive 
amount of memory and storage capacity is required. 

Due to the limited computing resources, most of the RF 
heating studies in the early stages has used a simplified 
form of lead composed of a single conductive wire and an 
insulation layer with the same diameter as the actual cable 
(28, 30, 39-44). However, in the simplified lead model, an 
error of electric field which is the main source to evoke the 
RF heating has inevitably occurred. To alleviate the error, 
Feng et al. (45) developed a numerical technique to evaluate 
the electric fields at the lead. Using the reciprocity theorem 
and the Huygens principle, the electric field induced at the 
electrode tip is calculated with high accuracy even with the 
simplified lead model. In addition, Park et al. (46) introduced 
the transfer function to calculate the RF heating of the 
lead in which the magnitude and the phase of a transfer 
function, as well as the incident electric field along the 
length of the lead can be used to calculate the RF heating 
at the electrode. 

3. Measurement Setup for Validation
Experiments are implemented to validate the simulated 
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results and improve our understanding of RF heating 
mechanism around the implants. Considering the safety 
of the patients with IMDs, most of the experiments are 
performed in the artificial model called ASTM phantom. 
ASTM phantom is designed to follow American Society for 
Testing and Materials (ASTM) F-2182-02 (47) or F-2182-
09 (48) standard for evaluation of induced heating around 
passive IMD exposed to MRI. To ignore the influence of 
the static magnetic field B0, some studies used Medical 
Implant Test System (MITS) working like whole-body RF 
coil as the RF source (49, 50). However, it is noteworthy 
that a continuous wave (CW) from MITS as the transmitted 
signal aggravates the RF heating effects compared to the 
clinical coil generating the signal with the pulses for the 
same input power and exposure duration. Under the RF 
source mentioned above, B1

+ field, incident electric field, 
SAR, temperature can be measured by MRI-compatible 
assessment system such as EASY6/MRI and DASY6 (SPEAG, 
Switzerland) which uses the probes with non-magnetic and 
shielded structure connected with optical fiber. 

4. Methods to Reduce RF Heating of Implanted Lead
In response to the increasing number of the patients 

with the leads, various mitigating techniques have been 
proposed to reduce the RF heating near the IMD. An 
intuitive way to remove the RF heating is the EM shielding 

by placing the conductive plate outside the region where 
the IMDs are inserted (51-55). When the electromagnetic 
wave travels through the shield composed of metal or 
electro-conductive plastic, most of the energy of the wave 
is absorbed at the surface of the layer; the amount of the 
absorbed energy at the biological tissues causing heating 
significantly decreases. However, in the light of the RF 
signals for an image acquisition, the RF pulse to excite 
the proton for imaging also absorbed by the shield, which 
shows an image with poor resolution at the shielded area. 
Furthermore, a high dielectric material (HDB) pad was used 
to reduce the RF-induced heating around the lead. The 
HDM can maintain the strength of the applied B1 field even 
with the significantly low required power for imaging (56-
59). However, the design of HDM are patient specific, and 
the manufacturing of HDM pad with dielectric constant up 
to 500 is challenging.

Rather than adding some external structures, methods 
to modify the structure of the lead itself are introduced 
to alleviate the RF heating (60-65). Bottomley et al. (62) 
shows that a helical design in the wire can reduce the 
heating at the tip of the lead. Also, Das et al. (63, 64) show 
that insertion of pins along the lead reduces the amount 
of the induced current flowed at the tip by changing the 
impedance distribution. However, the ways to modify the 
lead are also impractical to be used in clinic instantly 

Fig. 1. Depicted 3-D models in 
simulation depending on the size 
of single grid. (a) A heterogeneous 
human model gridded with 1 mm, 2 
mm, 4 mm resolution, respectively. 
(b) A DBS lead model (lead model 
3389 : Medtronic Inc. Minneapolis, 
MN, USA) gridded by 0.05 mm, 0.5 
mm, 2 mm resolution, respectively. 

a

b
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because the complex lead design also increase the difficulty 
of mass production. Instead, some studies try to reduce the 
RF heating by changing the lead path inserted in the human 
body. For example, Shrivastava et al. (66) and Golestanirad 
et al. (67) show that forming extra-cranial loops with the 
conventional lead can alleviate the RF heating around the 
electrode of DBS. 

Based on the electromagnetic theory, the intensity of 
electric field, especially tangential electrical field which 
lies on the surface of the conductor, mainly affects the 
RF heating around the electrode. Figure 2 shows the 
simulated SAR distribution around DBS lead depending on 
the applied EM field distribution. For the RF source, multi-
channel RF coil consisting of eight-microstrip transmission 
line (MTL) resonators working at 7 T were used, and whole 
input power of the coil is normalized to keep the mean 
of the B1

+ on the axial slice same with 2 µT. According to 
the results, peak SAR was found near the DBS electrode. 
In addition, we found that the inhomogeneity of the RF 
magnetic field deteriorated locally around the electrode 
aggravating the RF heating. Similar to this study, some 
studies tried to reduce the RF heating by modifying the 
time-varying EM field distributions in the human body (44, 
68-74). To minimize the incident electric field around the 
implant, proper amplitude and phase of the RF coil, which is 
essential to transmit a uniform magnetic field in the body, 

are calculated by the numerical method (75). Recently, an 
ultra-high field MRI over 7 T is introduced, and usually 
adopts the shimming technique to supplement the transmit 
efficiency degraded by field inhomogeneity. Therefore, the 
excitation control of the RF coil to achieve both acquisition 
of anatomical image with high resolution and alleviation of 
RF heating around IMD will be vigorously studied. 

RF Heating around Tattoos

Except the metallic IMD, a tattoo drawn on the body 
permanently can be a potential risk of RF heating. During 
the MRI scan, some cases that patients experienced 
pains like burning around the tattoos are infrequently 
reported (76-80). Even though the reason of the cutaneous 
inflammation is not revealed, most accepted theory is that 
tattoo is working as an electrical path. Tattoo ink contains 
the ferromagnetic component like iron oxide for color 
development (81, 82). In the dyed skin tissues with the 
conductive tattoo ink, electric currents are induced by the 
external time-varying EM field. Depending on the length 
and shape of tattoo, tattoo can work as an antenna which 
absorbs high energy and causes excessive skin heating. 
Especially, a tattoo with loop or shape edges increases the 
risk of the RF heating (83). 

Fig. 2. A numerical study to modify the applied electromagnetic field to reduce RF heating near DBS lead. Axial slices of 
electromagnetic field and SAR before and after modification of the amplitude and phase of each channel of RF coil are 
demonstrated at the right side of the image. The slice is placed where the electrode is located. The multi-channel RF coil 
is set to work at 7 T with the same input power scaled to the mean of the B1

+ on the axial slice of 2 µT. The total of the 
applied B1

+ values and peak SAR of the gridded cells inside the human head is shown at the lower right corner of each plot, 
respectively.
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For cosmetic and decorative purposes, any size and shape 
of the tattoos can be painted anywhere of the human 
body. In addition, the components and concentration 
of the tattoo ink are varied depending on the color and 
different manufacturers. To analyze the MRI-induced RF 
heating around the tattoos, therefore, parametric analysis 
including the ink, shape, size, color, and area to be drawn 
of the tattoo should be implemented through numerical 
simulations. 

DISCUSSION

In this article, the safety risks by the magnetic field of 
MRI and the methods to analyze it are comprehensively 
explained. Especially, as the number of patients with the 
IMD have been increased, studies related to the implants 
with lead wire are intensively analyzed. Although most 
of the studies are performed by using the numerical 
simulations, lots of numerical techniques and measurement 
methods are introduced to improve the reliability of the 
results. The calculated results are considerably dependent 
on the voxel size (84), indicating that assignment of proper 
grid size is the key factor for the numerical simulation. 
Instead of the simulation, the temperature can be measured 
wirelessly by MR thermometry. However, RF field and flip 
angle, which varies depending on the temperature, need to 
be corrected (85). Recently, 7 T ultra-high field MRI system 
gets FDA approval to use for clinical trials. Since MRI with 
stronger magnetic field aggravates RF heating around the 
implants, the study to analyze and solve the RF heating of 
the implants exposed to 7 T MRI will be promising.
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