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Introduction 

Reproductive medicine is an emerging field that focuses on male 
and female reproductive tract function and associated clinical issues 
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In recent years, nanotechnology has revolutionized global healthcare and has been predicted to exert a remarkable effect on clinical medi-
cine. In this context, the clinical use of nanomaterials for cancer diagnosis, fertility preservation, and the management of infertility and other 
pathologies linked to pubertal development, menopause, sexually transmitted infections, and HIV (human immunodeficiency virus) has sub-
stantial promise to fill the existing lacunae in reproductive healthcare. Of late, a number of clinical trials involving the use of nanoparticles for 
the early detection of reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics have been conducted. How-
ever, most of these trials of nanoengineering are still at a nascent stage, and better synergy between pharmaceutics, chemistry, and cut-
ting-edge molecular sciences is needed for effective translation of these interventions from bench to bedside. To bridge the gap between 
translational outcome and product development, strategic partnerships with the insight and ability to anticipate challenges, as well as an in-
depth understanding of the molecular pathways involved, are highly essential. Such amalgamations would overcome the regulatory gaunt-
let and technical hurdles, thereby facilitating the effective clinical translation of these nano-based tools and technologies. The present review 
comprehensively focuses on emerging applications of nanotechnology, which holds enormous promise for improved therapeutics and early 
diagnosis of various human reproductive tract diseases and conditions. 
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such as fertility preservation, infertility, pubertal development, 
menopause, and sexually transmitted infections (STIs), including 
AIDS (acquired immunodeficiency syndrome) and cancers [1]. Over 
the years, reproductive medicine has come a long way, as remark-
able technological advancements have given the gift of parenthood 
to infertile couples by empowering them to manage their fertility [2]. 
However, the objectives of reproductive medicine are not confined 
to only conception and delivery-related issues, but also include fertil-
ity-sparing treatments, selection and micromanipulation of gametes 
and embryos, in vitro culture, preimplantation genetic testing, and 
reproductive cryopreservation and associated diseases and condi-
tions [3,4]. Despite recent advances in this particular field of clinical 
medicine, the existing challenges are still enormous [5]. To confront 
such challenges, nanoengineering-based tools and technologies 
that offer minimally invasive detection and treatment of reproduc-
tive tract–associated pathologies are indispensable and warrant an 



innovative plan of action for the development of therapeutic inter-
ventions depending upon the stage and type of diseases and condi-
tions [6]. In order to put forward any such strategy, it is essential to 
design and develop novel applications using functionalized nano-
material-based methodologies that are rapid, selective, and sensitive 
in nature. Of course, the effective implementation of such interven-
tions will require careful validation in control, experimental, and field 
settings. 

The concept of nanotechnology dates back to 1959, when an 
American theoretical physicist, Professor Richard P. Feynman, at the 
Annual Physical Society Meeting at Caltech emphasized a conceptu-
al framework that involves direct manipulation of individual atoms 
using synthetic chemistry to develop denser computer circuit-
ry-based imaging platforms that could visualize tinier objects with 
higher resolution [7]. Although he never used the term “nanosci-
ence,” his pioneering views laid the foundation of the newly emerg-
ing field. In later years, Professor Norio Taniguichi, a MIT-based Amer-
ican engineer, drew significant attention from a wider audience to 
the nanotechnological field. During the 1990s, many nanotechno-
logical applications were derived from a specialized form of materials 
science [8]. However, these materials are currently used for a number 
of applications in various fields such as energy, electronics, food and 
agriculture, cosmetics, and healthcare. With the availability of enor-
mous opportunities and resources at public-funded institutions and 
in the industrial research and development sector, the field of nano-
technology is growing at an exponential scale. The trends in the de-
velopment of improved nanotechnological techniques over conven-
tional research and therapeutic approaches will inexorably encour-
age the rapid broadcasting of the nanobiotechnological “vision” to a 
growing number of research and clinical disciplines [9,10]. 

Over the last decade, the advent of new applications and technol-
ogies linked to biomedical nanotechnology have revolutionized ex-
isting preventive, diagnostic and treatment approaches. This innova-
tive approach has paved the way for development of improved and 
very sensitive tools for the investigation of the mechanisms underly-
ing the biology of various diseases. This has been the major driving 
force leading to the expansion of global health sector [11-13]. The 
global market of healthcare nanotechnology (including nanomedi-
cine) accounted for about 78.54 billion USD in 2012, which was ex-
pected to rise to 177.60 billion USD in 2020 with a compound annual 
growth rate of 12.3% from 2012 to 2020 [14]. A plethora of work is 
currently under progress in the healthcare sector. This includes a 
spectrum of systems that target specific cells or proteins from the 
systemic circulation to frameworks that incorporate multiple drugs 
and diagnostic agents, all the way to developing novel formulations 
that can deliver a diverse set of agents through the oral route. Some 
of these nanoproducts developed by the biotechnological and phar-

maceutical industry have demonstrated remarkable improvements 
in drug delivery systems, medical imaging, theranostics, biodegrad-
able implantable materials, tissue regeneration strategies, and diag-
nostic platforms [15,16]. 

Among the potential clinical applications of nanomaterial-based 
approaches, the use of investigational nanobiotechnological tools in 
reproductive medicine has already resulted in encouraging out-
comes in the treatment of several high-impact conditions, opening 
significant opportunities for alternative non-invasive or minimally-in-
vasive treatments for several traditionally “surgical” pathologies. The 
use of such tools has immensely contributed towards improved 
technologies for fertility preservation and the diagnosis and treat-
ment of infertility and other clinical problems associated with puber-
ty, menopause, STIs (including HIV [human immunodeficiency vi-
rus]), and cancers of the reproductive tract [17]. In reproductive biol-
ogy, the availability of versatile delivery vehicles with a large loading 
capacity and spontaneous internalization into target cells has creat-
ed unprecedented possibilities to explore and manipulate the fine 
mechanisms underlying reproduction and early embryo develop-
ment for research purposes. Of late, a few experimental investiga-
tions using nanodrug vectors for endometriosis, uterine fibroids, ec-
topic pregnancy, and trophoblastic diseases have also been report-
ed. Most of the trials involving nanoengineering methods for fertility 
regulation and treatment of reproductive cancers are still at the ini-
tial stage [18].  

The present review focuses on all emerging aspects of nanomate-
rial-based approaches for the precise identification, therapy, and 
monitoring of reproductive tract-associated disorders, which are at 
the center of attention in reproductive medicine, along with their 
bench-to-bedside translational potential to the point-of-care setting 
in a comprehensive fashion. 

Assisted reproductive technologies in clinical 
practice 

Reproductive medicine is an emerging discipline that not only 
deals with the application of novel approaches to address issues re-
lated to successful pregnancy and preservation of fertility, but also 
helps in the diagnosis and treatment of disorders or ailments that 
disrupt the normal functioning of the reproductive tract. In light of 
advances in the field of reproductive medicine, assisted reproductive 
technology (ART) has emerged as a successful and widely performed 
treatment paradigm throughout the world that involves a set of pro-
cedures that assist with infertility-related issues in males and females 
[6,19,20]. ART includes the use of in vitro fertilization (IVF), zygote in-
trafallopian transfer (ZIFT), gamete intrafallopian transfer (GIFT) and 
intracytoplasmic sperm injection (ICSI). IVF is generally applicable for 
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women with low ova production or men with a low sperm count. In 
IVF, women are treated with multiple drugs that lead to the produc-
tion of numerous eggs, which are removed and fertilized in vitro and 
the healthy embryos are finally implanted in the uterus. ZIFT involves 
a similar procedure to IVF with the striking difference that the em-
bryos are transferred in the fallopian tube. GIFT involves the transfer 
of eggs and sperm in the fallopian tube where the fertilization takes 
place. ICSI is often appropriate for couples affected by severe inade-
quacy of the sperm count, wherein a single sperm is injected into a 
mature egg followed by implantation to the uterus or transfer to the 
fallopian tube [1,21]. 

The past few decades have witnessed a substantial augmentation 
in the frequency of ART procedures, and ART has made it possible for 
countless infertile couples to experience parenthood. However, ex-
cessive usage is generally accompanied by elevated perinatal risk 
and problems related to multifetal gestations. Cases of multiple ges-
tations are often found to be associated with risks of maternal and 
fetal morbidity and mortality due to factors such as pre-term birth, 
pre-eclampsia, and pregnancy-related complications. However, evi-
dence supporting the generation of risk associated with multi-fetal 
gestations arising due to the application of excessive ART is limited. 
Apart from the aforementioned problems, the increased use of ART 
may also lead to the potential danger of monozygotic twinning, 
which may contribute to growth abnormalities and twin-to-twin 
transfusion [22,23]. Such complications could be overcome by ap-
propriate consideration of the maternal condition as well as a thor-
ough assessment of the patient’s obstetric history prior to ART pro-
cedures. In addition to these, determination of pre-existing disorders 
of the cardiopulmonary system and common ailments such as dia-
betes, hypertension, epilepsy, obesity, maternal medical status, treat-
ment regimen, and other aspects of care may have productive ef-
fects on pregnancy outcomes and significantly reduce risk to the 
woman’s life and health. In men, detection of oligospermia and azo-
ospermia, which are indicative of male infertility, by testing for cystic 
fibrosis, Y micro-deletion and karyotyping are essential to prevent 
any further complications in ART procedures such as IVF and ICSI. In 
addition to tests to identify any conditions that may cause complica-
tions prior to commencement of the ART procedures, couples must 
be counselled about the risks associated with the procedures [24,25]. 

Biomarkers indicative of reproductive 
impairment 

Biomarkers indicative of reproductive disorders might aid in the 
real-time assessment of exposure, early detection, identification of 
patients who require immediate treatment, prediction of outcomes, 
monitoring of disease progress, and stratification of the population 

on the basis of the etiology and severity of diseases. Despite the 
aforementioned benefits of biomarkers, the field of reproductive 
medicine has received remarkably little attention in the develop-
ment of novel molecular signatures. This may be due to the limited 
number of novel molecular entities entering clinical investigations. 
With the increase in the number of molecular markers that have 
been identified in reproductive science, it is highly imperative to un-
derstand the pathway from discovery to translational impact of a 
disease-associated signature, as most markers may not be clinically 
relevant due to a variety of complexities [26,27]. Therefore, extensive 
evaluation, standardization, and validation are required before es-
tablishing a molecular signature as clinical biomarker for disease as-
sessment and monitoring. In the most recent decade, biomarker re-
search has witnessed a significant resurgence in interest due to ad-
vancements in “omics” methodologies, which involve generating vo-
luminous amounts of data by high-throughput systems. These ad-
vances have made it possible to establish fascinating association of 
novel biomarkers and disease mechanisms in a relatively easy way 
for early screening [24,28]. The challenge is to validate such associa-
tions and to move them into the clinical setting. Reproductive medi-
cine is still in its infancy in terms of integrating novel biomarkers into 
precision medicine. However, concerted efforts and speedy advance-
ments in the research in reproductive medicine might narrow the 
gap of the translational process. 

Pursuit of nanotechnology in reproductive 
medicine: accomplishments and challenges 

Increasingly many studies have affirmed that impotence and re-
productive disorders, such as endometriosis, adenomyosis, polycys-
tic ovary syndrome, and uterine fibroids, negatively affect pregnancy. 
Repeated surgical interventions may reduce the likelihood of natural 
and assisted conception, which may result in an increasing depen-
dence on third-party reproductive methodologies. The combination 
of nanotechnology-based approaches with reproductive medicine 
has led to the development of safer strategies for improving diagno-
sis and increasing precision and responsiveness [29]. Several studies 
have demonstrated the potential of nanomaterial-based methodol-
ogies that offer efficient noninvasive detection, treatment and moni-
toring of common disorders that may affect women of reproductive 
age (Figure 1). 

1. Endometriosis 
Endometriosis and fibroids represent the most common female 

reproductive disorders; endometriosis is present in approximately 
10%–15% of reproductive-age women and in 70% of women with 
chronic pelvic pain. Endometriosis represents the commonest form 
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of pregnancy-related complication and affects both the endometrial 
glands and the stroma outside of the endometrial cavity. The in-
crease in the percentage of women affected by endometriosis is due 
to the late diagnosis of the disease, which results in significant reduc-
tion in the quality of life due to symptoms including non-menstrual 
pelvic pain, dyspareunia, and infertility [30,31]. Since the majority of 
women report the symptoms of endometriosis in adolescence, early 
detection and timely treatment may significantly alleviate pain and 
avert progression of the disease, thereby preserving fertility. The 
treatment approach has recently been gradually shifting from surgi-
cal ablation to medication control, and it is therefore highly desirable 
to develop a non-surgical mode of diagnosis. Several investigative 
studies have reported the application of nanomaterial-based ap-
proaches for the treatment of endometriosis and uterine fibroids. For 
instance, a novel mitigation approach using nanoceria (cerium oxide 
nanoparticles) was demonstrated in an endometriosis-induced 
mouse model by Chaudhury et al. [32], who reported a considerable 
reduction of endometrial glands, microvessel density in the perito-

neum, and endometrial lesions upon treatment with nanoceria, 
highlighting the antioxidant and anti-angiogenic potential of the 
developed system, both in vitro and in vivo. The system also exhibit-
ed a promising reduction in the adverse effects related to endome-
triosis on the quality of oocytes, which is a critical factor for successful 
pregnancy. A novel herbal nanoformulation comprising a Copaifera 
langsdorffii oil-resin nanocomposite showed evidence of reduction 
of cell viability, alterations of cellular morphology, and induction of 
necrosis and apoptosis in proliferative primary endometrial and en-
dometriotic stromal cells [33,34]. Singh et al. [35] reported a combi-
natorial approach for the treatment of endometriosis that consisted 
of dual drug-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparti-
cles combining the anti-angiogenic and antioxidant properties of 
epigallocatechin gallate and the targeted matrix metalloproteinase 
inhibitory activity of doxycycline. A novel laser-mediated photother-
mal ablation therapy of endometriosis was reported to show en-
hanced permeability and retention and targeted delivery of gold 
nanoparticles to endometriotic sites using the TNYL peptide, which 
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Figure 1. Nanotechnological strategies for addressing emerging issues in male and female reproductive health.
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has a strong affinity for overexpressed EphB4 receptors in endome-
triosis lesions [36].  

The increase in the number of women experiencing discomfort 
due to endometriosis is attributable to late diagnosis; this problem is 
exacerbated if the ovaries are involved, resulting in the formation of 
cysts, often termed as endometriomas. The discomfort and compli-
cations associated with endometriosis may be avoided if it is diag-
nosed at an early stage, providing better possibilities for pain and in-
fertility management. Conventional diagnostic procedures such as 
operative laparoscopy and biopsy are often invasive in nature, which 
is a major cause of distress among patients that hinders early screen-
ing [37]. Such situations could be avoided by employing nanomate-
rial-based sensing approaches, which offer real-time assessment of 
the disease. Several nano-sensing strategies have been proposed by 
investigators for effective detection of endometriosis, enabling time-
ly commencement of therapy. The presence of endometriosis, owing 
to its inflammatory characteristics, is often characterized by distur-
bances in the immunological environment, which is strongly reflect-
ed by alterations in the expression levels of various cytokines, angio-
genic factors, matrix metalloproteases, tumor suppressor genes, and 
circulating nucleic acids [38,39]. Cathepsins (in particular cathepsins 
B, D, and G), which belong to the class of proteases, have been quan-
titatively evaluated in patients with proliferative eutopic endometri-
um using a surface plasmon resonance (SPR) imaging technique, 
since cathepsins have been found to have a positive impact on the 
establishment of endometriotic lesions. The results of the study 
demonstrated a significantly higher expression of cathepsin G (CatG) 
in eutopic endometriotic patients than in the control group [40,41]. 
In view of this, an SPR-chip-based biosensor was developed by Grzy-
wa et al. [42] for the selective determination of CatG in endometrium 
samples of patients and healthy controls. The gold-chip was sur-
face-tethered with a phosphonic-type inhibitor that offered selective 
determination of active CatG in the sample at a picomolar concen-
tration. For the in vivo detection of endometriotic lesions, hyaluronic 
acid (HA)-attached magnetic iron oxide nanoparticles (HA-Fe3O4 
NPs) were developed as novel contrast agents for magnetic reso-
nance imaging (MRI) in rodents. The results of the study highlighted 
the potential of the developed systems for hyperthermal treatment 
of endometriosis in the future [43]. 

2. Uterine fibroids 
Uterine fibroids, often known as uterine leiomyomas, are non-can-

cerous benign tumors that often appear during pregnancy. After en-
dometriosis, uterine fibroids are among the most commonly occur-
ring solid tumors in women of reproductive age [31]. These neo-
plasms occur in about 77% of women, including 25% of those above 
the age of 45 years. The presence of fibroids in the uterus is often ac-

companied by symptoms with a major impact on quality of life, such 
as irregular and prolonged menstrual bleeding, anemia, pelvic dis-
comfort, pelvic masses, bowel and bladder dysfunction, and obstet-
ric complications. The presence of uterine fibroids has been strongly 
correlated with infertility and abortion, which significantly affect 
women’s health and quality of life and may necessitate the use of 
ART [44,45]. Early treatment of fibroids, which hamper fertility, might 
increase the likelihood of future pregnancies. Shalaby et al. [46] 
demonstrated an effective noninvasive adenovirus-based alternative 
for the treatment of uterine fibroids using a combination of vi-
ral-based gene delivery with nanotechnology. A targeted magnetic 
nanoparticle-based approach was adopted for the efficient trans-
duction of adenovirus under an external magnetic field. The novel 
combinatorial method offered a paradigm shift in therapeutic inter-
ventions for uterine fibroids, as it may significantly eliminate tu-
mor-forming fibroid stem cells, which currently pose a major chal-
lenge to treatment. 

3. Pregnancy-related complications: ectopic pregnancy and 
gestational trophoblastic diseases 

Ectopic pregnancy is the most common cause of death among 
women during the early stages of pregnancy. An ectopic pregnancy 
occurs when the fertilized egg/embryo is implanted outside of the 
uterine cavity. The overwhelming majority of ectopic pregnancies 
(97%) involve implantation in the fallopian tube, while in the remain-
ing 3% of cases, implantation occurs in the cervix, ovary, peritoneal 
cavity, or uterine scars. This pregnancy-related complication can re-
sult in rupture of the tube, leading to life-threatening internal bleed-
ing. Ectopic pregnancies account for about 4% to 10% of pregnan-
cy-related deaths and are characterized by a high incidence of ecto-
pic site gestations in subsequent pregnancies [47]. Although several 
advances have been made in the detection and treatment of ectopic 
pregnancy, not all can be considered highly effective. Therefore, 
there is an urgent need for the development of diagnostic and ther-
apeutic interventions that focus on precisely identifying and ad-
dressing the causes of the disease without compromising the other 
reproductive organs. Nanomedicine comprises an amalgamation of 
medicine and nanotechnology for the development of methodolo-
gies or strategies to improve the safety and efficacy of the conven-
tional drugs by achieving targeted delivery to the site of action. Such 
precise targetability is urgently required for the development of nov-
el methods of drug transport in women with pregnancy-related 
complications or diseases [48,49]. Fertility preservation-based surgi-
cal interventions are a major challenge in initial-stage ectopic preg-
nancy cases, especially among women with rare locations of ex-
tra-uterine pregnancies. This challenge has led medical practitioners 
to seek alternative methods for treatment. For instance, doxorubi-
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cin-loaded EnGeneIC delivery vehicles were prepared for targeted 
delivery to the epidermal growth factor receptor expressed on pla-
cental cells. In vitro, ex vivo, and in vivo studies demonstrated signifi-
cant inhibition of the trophoblastic tumor cell proliferation mediated 
by an increase in apoptosis, which offers a novel alternative to ecto-
pic pregnancy treatments [50]. Complications could be avoided if ec-
topic pregnancy is diagnosed at the earliest possible stage. In recent 
years, significant advances in the field of nanotechnology have 
sparked research interest in the development of early detection ap-
proaches using nano-biosensing. Studies have reported the detec-
tion of human chorionic gonadotropin as an important protein 
marker indicative of pregnancy-related complications such as ecto-
pic pregnancy, miscarriage, fetal abnormalities, and testicular tumors 
using ultrasensitive and highly selective carboxyl-graphene oxide–
based SPR aptasensor and electrical double layer-gated field effect 
transistor-based chip sensor [51]. 

Another major pregnancy-related complication is gestational tro-
phoblastic diseases (GTDs) which comprise a spectrum of tumors 
with a wide range of biological behavior and potential for distant 
metastases that arise from placental trophoblastic tissue after nor-
mal or abnormal fertilization [52]. Gestational choriocarcinoma is the 
most prevalent GTD. Despite progress in the field of modern repro-
ductive medicine, gestational trophoblastic tumors continue to pose 
a significant challenges both for diagnosis and treatment owing to 
their irregularity, broad range of differences in diagnoses, and the 
uncertainty of detection of the precursor lesions [53]. These factors 
have fueled the need for extensive research on the development of 
precise and selective strategies for identifying and treating these tu-
mors through nanotechnology. A glycosaminoglycan, placental 
chondroitin sulphate A (plCSA), is highly expressed in a wide range 
of cancer cells and placental trophoblasts, highlighting its potential 
as a target in the treatment of GTDs [54]. Recently, a study investigat-
ed the efficient delivery of methotrexate to placental cells using syn-
thetic plCSA binding peptide (plCSA-BP)–tethered lipid-based 
nanoparticles as a novel targeted approach for the treatment of 
pregnancy-related complications such as ectopic pregnancy and 
choriocarcinoma. The results of the research illustrated efficient bind-
ing of the plCSA-BP attached to the methotrexate-loaded nanoparti-
cles to human placental syncytiotrophoblasts and mouse tropho-
blasts throughout gestation after targeted delivery of the drug to the 
placenta of the mouse model without any fatal effects on the fetus 
[55]. Likewise, a similar study illustrated the development of plC-
SA-BP-decorated polymeric core-lipid shell nanoparticles for the tar-
geted delivery of doxorubicin to the placental choriocarcinoma 
(JEG3) cells [54]. Therapeutic interventions in patients with gesta-
tional trophoblastic choriocarcinoma often involve the application of 
systemic anti-neoplastic agents at high doses, which results in arbi-

trary distribution of the drugs to other organs and consequent sys-
temic toxicity. To avoid such adverse effects, in light of the targeting 
potential of plCSA-BP, Zhang and co-investigators demonstrated the 
efficient delivery of doxorubicin by nanoparticles to choriocarcinoma 
cells as a novel targeted cancer therapeutic approach. The results of 
the investigation reported competent internalization in the lyso-
somes resulting in increased in vitro anti-cancer action, rapid local-
ization in the tumors, inhibition of primary tumor growth, and sup-
pression of metastasis when observed in vivo using a rodent model 
[56].  

4. Sexually transmitted infections and HIV 
Reproductive tract infections (RTIs) are a concealed epidemic af-

fecting the quality of life of both women and men, as well as com-
promising health and economic conditions throughout the world by 
means of their severe consequences, which include pelvic inflamma-
tory disease, infertility (in both women and men), ectopic pregnancy, 
and adverse pregnancy outcomes such as miscarriage, stillbirth, 
preterm birth, and congenital infections. According to World Health 
Organization estimates, about 200 million cases of RTIs among wom-
en due to sexual transmission are reported every year in developing 
countries [5,57]. The reproductive-age population is highly suscepti-
ble to developing RTIs, especially women. RTIs include endogenous-
ly occurring infections such as bacterial vaginosis; infections trans-
mitted due to sexual contact such as gonorrhoea, chlamydia, syphi-
lis, chancroid, trichomoniasis, genital herpes, genital warts, and HIV; 
and iatrogenic infections such as pelvic inflammatory disease. 
Prompt diagnosis and treatment would reduce the transmission of 
these diseases [5,58]. Several studies have reported the use of nano-
material-based treatment and monitoring approaches for safeguard-
ing reproductive health and improving their quality of life. There is 
ample evidence of the usage of nanoparticles for the prevention, 
treatment, and early detection of RTIs, including STIs. For instance, 
oxygen vacancies comprising zinc oxide tetrapod nanoparticles have 
been fabricated for the nano-immunotherapy of genital herpes in 
females. This nano-system offered a great potential as an intravagi-
nal microbicide/vaccine, leading to a significant reduction in vaginal 
infections and animal deaths, as well as an increase in the T cell-me-
diated and antibody-mediated responses, which subsequently sup-
pressed re-infections [59]. Another group reported the treatment of 
genital herpes using acyclovir as a model drug encapsulated in poly-
vinyl pyrrolidone–Eudragit RSPO hybrid polymeric nanoparticles in 
the form of an in situ gel system. The developed formulation demon-
strated a controlled release of the drug with improved permeability 
and viability for the vaginal epithelial cell lines, as well as a two-fold 
increase in the bioavailability of the drug in rat models in compari-
son to the pure drug, highlighting its potential for clinical therapy 
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[60]. Several polyphenolic compounds exhibit anti-viral properties, 
among which tannic acid was used by Orlowski et al. [61], for the de-
velopment of a synergistically acting formulation against herpes 
simplex virus 2 (HSV-2). For this, silver nanoparticles, with inherent 
anti-microbial activity, were synthesized using green chemistry fol-
lowed by modification with tannic acid, which in mice models 
demonstrated an increment in levels of interferon-gamma-positive 
CD8+ T cells, activation of B cells and plasma cells, and reduction of 
viral titers in vaginal tissues shortly after the treatment. Another ther-
apeutic approach for HSV-2-induced genital infections using exclu-
sively customized zinc oxide tetrapod nanoparticles was described 
by Agelidis et al. [62], who reported a significant inhibitory effect on 
viral vaginal infections in female Balb/c mice. The proposed microbi-
vac system is a promising platform for the development of live virus 
vaccines. A novel polymeric nano-carrier system developed by Gan-
da et al. exhibited excellent potential for the delivery of peptide vac-
cines. The system comprised fourth-generation hydroxyl- terminated 
polyamidoamine (PAMAM) dendrimers (G4OH) conjugated with an 
ester bond to a chlamydial glycolipid antigen mimicking peptide 
(peptide 4; Pep4). The G4OH and Pep4 bond, upon dissociation in 
the intracellular environment, led to antigen presentation, which in-
duced chlamydia-specific serum antibody recruitment after subcuta-
neous immunization. The action of the formulation demonstrated an 
increased anti-chlamydia antibody response in mice owing to en-
hanced and sustained Pep4 immunogenicity as a consequence of 
ester bond dissociation by phagolysosomes [63]. Several reports 
have described examples of nanoparticle-based delivery to the re-
productive organs, which offer bioavailability and biodistribution to 
a higher degree, as well as prolonged release/action and retention of 
the drug in comparison to the drug alone. In light of this, Park et al. 
[64], demonstrated the potential of an anti-retroviral drug, elvitegra-
vir, loaded surface-tailored bio-adhesive poly(lactic acid)-hyper-
branched polyglycerols (PLA-HPG) nanoparticle formulation for pro-
longed intravaginal delivery. The developed formulation exhibited a 
remarkable improvement (roughly five-fold) in the sustained deliv-
ery of the drug in comparison to the non-adhesive alternative for-
mulation. The results of the research highlighted the potential of the 
adhesive PLA-HPG nano-formulation for intravaginal therapeutics to 
treat and prevent STIs [65]. Aside from STIs associated with HSV, 
Wagner et al. [66] developed a nanoparticle-based targeted ap-
proach that comprised microbicidal drugs encapsulated in mu-
cous-penetrating PLGA-PEG nanoparticles for intravaginal inocula-
tion against STIs. Soler et al. [67] illustrated the development of a 
rapid nano-plasmonic biosensor that offered simultaneous detection 
of Chlamydia trachomatis and Neisseria gonorrhoeae. The nano-bio-
sensor comprised an array of gold nano-hole sensors that allowed 
precise detection and quantification of the levels of the two afore-

mentioned bacterial strains in an amplification-free fashion. 
STIs are among the most prevalent diseases around the world. De-

spite extensive research, STIs such as HIV and HSV still haunt a large 
population due to their incurability. Considering the present situa-
tion, the global health initiative programs have primarily focused on 
reducing the incidence of STIs, especially in highly susceptible female 
populations [68]. Several nanotechnology-based therapeutic, pre-
ventive, and early diagnostic approaches have emerged as potential 
alternatives to conventional orally administered medications. For in-
stance, Mandal et al. [69] reported that a conventional anti-retroviral 
drug, emtricitabine, was encapsulated in PLGA polymeric nanoparti-
cles to circumvent the limitations associated with the large volume 
of distribution, short plasma life, low bioavailability, and cytotoxic 
nature of the drug to improve its efficacy for the therapeutic treat-
ment of HIV infection. Similar studies have demonstrated the encap-
sulation of conventional anti- retroviral drugs such as zidovudine, a 
combination of three agents (zidovudine, efavirenz, and lamivudine); 
and stavudine in PF-68-coated alginate nanoparticles, and lactofer-
rin nanoparticles and gelatine liposomal nano-formulations have 
been reported as strategies for enhanced anti-HIV therapy [70-72]. 
Efficient microbicide action was displayed by a combination of a HIV 
reverse transcriptase–inhibiting drug (efavirenz) and an integrase in-
hibitor (elvitegravir) encapsulated in a graft copolymer of methoxy-
polyethylene glycol-polylysine with a fatty hydrophobic core. The 
developed nano-formulation exhibited a significant reduction of cy-
totoxicity and in vivo bio-distribution upon topical intravaginal ad-
ministration [73]. A similar effect was demonstrated by Mirani et al. 
[74], wherein a nano-formulation comprising a lipidic nano-microbi-
cide gel was loaded with tetrahydrocurcumin. The formulation ex-
hibited significant stability in the release profile and quick time-inde-
pendent intracellular uptake, highlighting its potential for anti-retro-
viral therapy. A recent study illustrated a potential multiplexed in vivo 
treatment approach for HIV and HSV infections using a composite 
system consisting of methoxypoly(ethylene glycol)-b-poly(lac-
tide-co-glycolide) Griffithsin nanoparticles incorporated in poly-
caprolactone fibers adjoined with polyethylene oxide fibers [75]. 

With advancements in the field of nanomaterials for diagnostic 
purposes, a surge of studies have been reported that offer rapid, and 
minimally-invasive methods for the early detection of STIs such as 
HIV and HSV. For the detection of human immunodeficiency virus 
type 1 (HIV-1) DNA, as a potential molecular signature of retroviral 
disease, a novel, user-friendly lateral flow assay was developed by Fu 
et al. [76] that utilizes surface-enhanced Raman scattering for precise 
identification and quantification. Another group reported the appli-
cation of fluorescence resonance energy transfer for the detection of 
viral DNA using a combination of single-strand DNA (ssDNA)-teth-
ered silver nanocrystals as donor and carbon nanoparticles as accep-
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tor species. The combination exhibited desorption of the fluores-
cence in the presence of the target analyte, while restoration of the 
fluorescence in the absence of the same led to a highly sensitive di-
agnosis [77]. Fluorescence quenching as a mode of detection of HIV-
1 DNA was employed by Deng et al. [78] and Fang et al. [79], who 
used fluorescent quantum dot–based lateral flow strips and surface 
DNA-decorated fluorescent silver nanocrystals, respectively. The 
HIV-related p24 antigen has emerged as another highly specific 
marker for the prompt detection of HIV in the recent years. Nano-de-
tection approaches, such as a sandwich immunoassay amalgamat-
ing optoplasmonics and a micro-cantilever-based nanoplatform, 
have been developed for the precise detection of the HIV-1 capsid 
antigen p24 directly from human serum samples [80]. A similar sand-
wiched immunoassay developed by Chunduri et al. [81], involving 
the application of surface streptavidin-decorated europium-doped 
fluorescent silica nanoparticles, demonstrated a 100-fold improve-
ment in detection of the HIV-1 p24 antigen in clinical samples com-
pared to conventional enzyme-linked immunosorbent assay. 

5. Gene therapy for reproductive disorders 
Efficient gene therapy for the treatment of endometriosis was 

demonstrated by Zhao et al. [82], through the application of pig-
ment epithelium-derived factor plasmid encapsulated in lipid-graft-
ed chitosan micelles. An in vivo study in a rat model showed a signifi-
cant diminishment of endometriotic lesions, as well as atrophy and 
degeneration of ectopic endometrium with no cytotoxic effect on 
the reproductive organs. A similar gene therapy for endometriosis 
was reported by Wang et al. [83], using endostatin-loaded PAMAM 
(PAMAM-Es) dendrimers in a non-invasive animal model. The results 
demonstrated a significant reduction in endometriotic lesions owing 
to the anti-angiogenic mechanisms of the PAMAM-Es in comparison 
to the traditional gene carrier, Lipofectamine, both in in vitro and in 
vivo settings. A novel polymeric gene delivery system, comprising 
HA-tethered polyethylenimine-grafted chitosan oligosaccharide 
nanoparticles encapsulating small interfering RNA (siRNA) was re-
ported to considerably reduce the size of endometriotic lesions, with 
atrophy and degeneration of the ectopic endometrium. Endometri-
otic rat models exhibited a noteworthy decline in the expression of 
CD44 expression in the treated group with respect to the control en-
dometriotic population [84]. Gene therapy using cyclic arginine-gly-
cine-aspartic acid (cRGD)-attached fifth-generation PAMAM den-
drimers to efficiently deliver siRNAs to spermatogonial stem cells 
(SSCs) demonstrated great potential for promoting auto-transplan-
tation of SSCs with genetically modified cells as a curative approach 
for male infertility caused by genetic disorders [85]. 

6. Treatment of male associated disorders: erectile dysfunction 
Reproductive disorders in men include benign prostatic hyperpla-

sia (BPH) or prostate enlargement in general, prostatitis, and male in-
fertility issues such as erectile dysfunction, testosterone deficiency, 
undescended testicle, varicocele or dilated veins around the testicle, 
and hydrocele or fluid around the testicle. BPH is often characterized 
by the increased growth of connective tissue, smooth muscle, and 
glandular epithelium upon histological visualization. As it progress-
es, BPH results in compression of the urethral pathways, leading to 
bladder outlet obstruction, which may subsequently result in lower 
urinary tract infections, retention, and other undesirable effects. Evi-
dence supports the potential role of diet, lifestyle, and genetic fac-
tors, as well as metabolic syndrome and erectile dysfunction, on the 
incidence of hyperplasia of the prostate [86,87]. Although many 
choices of treatment are available, ranging from laser ablation meth-
ods medications (e.g., α-blockers, 5-α reductase inhibitors), and com-
bination therapy to surgical procedures and medical devices (e.g., 
Prolieve and Urolift), the treatment options are often accompanied 
by unwanted effects like retrograde ejaculation, complications 
during urination, urinary tract infections, erectile dysfunction, and 
even incontinence (very rarely). In order to circumvent these undesir-
able events, nanomaterial-based therapies have been developed in 
recent years. For instance, de Sousa et al. [88] reported that PLGA 
nanoparticles and clay nano-systems encapsulating babassu oil were 
prepared for targeted delivery to hyperplastic tissue. Both the devel-
oped systems demonstrated an efficient encapsulation of about 90% 
with excellent bioavailability, highlighting the potential of the sys-
tem for BPH therapeutics. Another study corroborated the ability of 
gold nanoparticles to target inflammation and angiogenesis for the 
development of novel BPH therapies. Adult male rats with experi-
mentally induced BPH that received treatment with gold nanoparti-
cles demonstrated a significant reduction of BPH in a size-dependent 
fashion with inhibition of inflammation, angiogenesis, and prostatic 
cell proliferation [89]. This could be a remarkable milestone for the 
progression of nanomaterial-based therapies towards clinical investi-
gation for bench-to-bedside translation. 

Prostatitis is a common urinary tract condition following prostate 
cancer and BPH that involves therapeutic challenges. Prostatitis ac-
counts for about 8.2% of men, with an estimated expenditure of $84 
million on its diagnosis and treatment excluding pharmaceutical 
aids. Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) oc-
curs in 90% to 95% of men with prostatitis, of whom 10% to 14% are 
severely affected. The symptoms of CP/CPPS range from a combina-
tion of acute and chronic bacterial prostatitis, CPPS, and none what-
soever (in asymptomatic patients). This medical condition is often di-
agnosed based on the patient’s history, a physical assessment, urine 
specimen culture and testing, and pre- and post-prostatic massage. 
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After diagnosis, CP/CPPS is treated with medical agents such as anti-
microbials, alpha blockers, and anti-inflammatory drugs. However, 
the conventional diagnostic and therapeutic approaches are often 
questioned due to limited availability of evidence supporting their 
effectiveness [90,91]. The effectiveness of these treatments could be 
improved by exploiting the targeting potential of the nanoparticles 
to prostatic tissue. With the targeting potential of nano-systems in 
mind, disease-relevant antigenic T2 peptide-conjugated biodegrad-
able PLGA nanoparticles modified with poly ethylene-alt-maleic an-
hydride were prepared by Cao et al. [92] and were demonstrated to 
be an effective strategy for the treatment of prostatitis in a CP/
CPPS-induced mouse model. A similar study by Cheng et al. [93] il-
lustrated the preparation of PLGA nanoparticles coupled with au-
to-antigen peptide T2 for targeted action, initiation of immune toler-
ance, and amelioration of disease symptoms in a mouse model with 
induced CP and CPPS. Both studies presented a potential mitigation 
approach and an economically feasible tool for treatment of CP/
CPPS. 

Erectile dysfunction is a common problem impacting millions of 
men and is defined as the incapability of a man to achieve or main-
tain sufficient erection for satisfactory sexual performance. Despite 
the availability of various treatment options, ranging from first-line 
treatments with oral agents such as sildenafil, tadalafil, and vardena-
fil to second-line approaches such as intracavernosal injections and 
intra-urethral therapy, a significant proportion of men discontinue 
treatment. The discontinuation is directly attributed to the expensive 
nature of these therapies, as well as the fact that they involve dis-
comfort, lack of spontaneity, prolonged erections, and priapism. 
However, with the advancements in the pharmaceutical industry, 
the search for alternatives for the delivery of vasoactive and vasodila-
tory medications is continuing [94,95]. Topical delivery has proven to 
be highly effective for the treatment of erectile dysfunction because 
local action avoids systemic effects and is easy to use. However, the 
applicability of topical methods is often hindered by the capability of 
the treatments to cross the barrier due to the penile skin and tunica 
albuginea, which inhibits the therapeutic efficacy of the drug. This 
limitation could be surmounted if efficient delivery of the drug is 
achieved, which is the reason for the success of nanoparticles in this 
field. A noteworthy example involved treatment and monitoring of 
erectile dysfunction by human mesenchymal stem cell- labelled su-
per-paramagnetic iron oxide nanoparticles (SPION-MSCs) using MRI. 
The SPION-MSCs transplanted in the cavernosa of rats exhibited re-
tention for about 4 weeks after cavernous nerve injury and enabled 
an efficient recovery of erectile dysfunction that could be monitored 
by MRI in an in vivo setting [96]. A formulation (NanoShuttle) com-
prising a complex of adipose-derived stem cells and magnetic 
nanoparticles demonstrated effective in vivo cell tracking in the cor-

pus cavernosum under the effects of a magnetic field for up to 3 days 
and was shown to be an efficient stem cell therapy for erectile dys-
function in an animal model [97]. The dendrimer-based delivery of 
vardenafil hydrochloride was demonstrated by Tawfik et al. [98], and 
sustained release of the drug was found, with a 3.7-fold improve-
ment in bioavailability. Among the pharmaceutical nano-formula-
tions, lipid-based systems have attracted significant attention in the 
field of reproductive medicine owing to their capability to improve 
the solubility, bioavailability, and biocompatibility of poorly wa-
ter-soluble medications. Fahmy’s work illustrated the development 
of a biocompatible nanoethosome formulation of vardenafil for en-
hanced permeation via the transdermal route and improved bio-
availability. The developed system, which exhibited a 3.05-fold im-
provement in permeation, consisted of a vardenafil powder- con-
taining film. A two-fold increment in the transdermal bioavailability 
was found when the topical nanoethosome film was used in com-
parison to an aqueous suspension of vardenafil. This transdermal de-
livery system provides a potential method of curing erectile dysfunc-
tion and managing impotence [99]. A similar study using nano-trans-
fersomal transdermal films as a mode of delivery of sildenafil citrate 
reported a significant enhancement in the ex vivo permeation char-
acteristics, controlled release, bioavailability, and absorption of the 
drug [100]. Another study demonstrated the transdermal delivery of 
papaverine to the penis using an ultra-flexible liposomal formulation 
(nano-transferosomes) for the effective diagnosis and treatment of 
erectile dysfunction. The prepared formulation exhibited remarkable 
potential as a therapy for male impotency [101]. A considerable im-
provement in the bioavailability and transdermal delivery of avanafil, 
a first-line drug for the treatment of erectile dysfunction, was ob-
served when it was delivered in the form of solid lipid nanoparti-
cle-based hydrogel film [102]. 

7. Nano-based approaches for treatment and diagnosis of 
male infertility 

Infertility is a condition wherein a couple is unable to become 
pregnant despite being sexually active and avoiding contraception. 
Male factor infertility can result from a low sperm count, poor sperm 
quality, or both. According to global statistics, about 15% of couples 
suffer from infertility-related issues, and in 50% of these couples, the 
male partner is affected by aberrations in sperm properties, count, 
vitality, and morphology [103,104]. This fact underscores the need to 
develop novel methodologies for the early identification of the caus-
es of infertility and approaches for the personalized treatment of in-
fertility. In this aspect, nanotechnology has come to the forefront in 
recent years, offering better solutions for infertility related issues. 
One such solution was described in the work of Moridi et al. [105], 
who found that the deleterious effect of malathion, a common or-
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ganophosphorus pesticide, on the male reproductive system was re-
markably reduced by the application of cerium dioxide nanoparticles 
(CeNPs). Restoration of testicular changes was observed upon treat-
ment with CeNPs in malathion-exposed male rats, and the nanopar-
ticles exerted a protective effect on sperm count, motility, and viabil-
ity. Another study utilized the magnetic properties of surface 
charged Fe3O4 nanoparticles for the development of a method of 
controlling sperm motility as a novel and simplified approach for the 
improvement of fertility in infertile males [106]. Rapid and precise 
detection of semen abnormalities is crucial for diagnosing male in-
fertility and arranging customized care. The size and abundance of 
samples, however, impose a number of detection constraints [104]. 
One such solution was proposed by Vidya and Saji [107], wherein a 
quick screening approach utilizing an environment-friendly, mini-
mally-invasive, and label-free heparin gold nanoparticle-based colo-
rimetric biosensor was developed for the detection of semen prota-
mines as effective biomarkers of male infertility. The nano-biosensor 
demonstrated noteworthy changes in plasmon absorption spectra 
upon specific detection of protamines in real semen and serum sam-
ples. A similar colorimetric nano-biosensing approach for human se-
men analysis was proposed by Sun et al. [108]. The nano-biosensor 
comprised zirconium metal−organic frameworks (Zr-MOFs) coupled 
with single-stranded DNA-decorated gold nanoparticles (ssD-
NA-AuNPs), and precise detection was enabled by the possibility 
that the target proteins in the test sample would hamper the co-pre-
cipitate formation of Zr-MOFs and ssDNA-AuNPs. This change mani-
fests as an alteration in the color of the supernatant, offering the po-
tential to accurately identify possible cases of male infertility with ut-
most simplicity and high sensitivity. 

8. Nanomaterials in contraception 
Contraception has been a major topic of debate for decades, as 

promoting birth control and family planning not only benefits indi-
viduals’ health and well-being, but also helps facilitate economic 
growth. The current methods of birth control usually involve admin-
istration of hormonal contraceptive medications through the oral, 
transdermal, intravaginal, and intrauterine routes. Several other ap-
proaches such as female sterilization, male condoms, and intrauter-
ine devices (IUDs) have attracted significant attention as potential al-
ternatives to conventional drugs. However, these approaches are 
faced by challenges such as an increased risk of blood clots or breast 
cancer associated with the long-term usage of contraceptive pills, 
the risk of failure of condoms, and the irreversible nature of vasecto-
mies [109,110]. This situation clearly indicates the increasing need for 
new developments in both male and female contraceptive methods 
[111]. The past decades have witnessed remarkable improvements 
in contraceptive methods owing to nanotechnological advance-

ments. Chitosan nanoparticle-based immuno-contraceptive vac-
cines have exhibited efficient peptide and protein delivery with in-
creased uptake by dendritic cells and retention in the lymph nodes. 
The vaccines target luteinizing hormone-releasing hormone, thereby 
increasing the generation of antibodies that hamper reproductive 
capabilities; thus, this framework offers a potential system of contra-
ception development [112]. Another study used biodegradable 
polymer-based polyethylene sebacate particulates as effective carri-
ers for the delivery of an HSA peptide-1 vaccine [113]. The improved 
immunogenic activity of an mCRISP1 DNA contraceptive vaccine 
was demonstrated by chitosan-DNA nanoparticles that exhibited 
high effectiveness and safety [114]. Apart from vaccine delivery, pho-
to-thermal therapy using in situ testicular injection of methoxypoly 
(ethylene glycol)-modified gold nano-rods under near-infrared light 
in male mice led to male infertility. The high temperature induced by 
plasmonic nanomaterials resulted in complete destruction of the 
morphological characteristics of the testes or seminiferous tubules, 
leading to loss of fertility [115]. Remarkable achievements have been 
made in combining IUDs with nanomaterials to develop effective 
and long-term contraceptives. For instance, nano-copper and poly-
meric substances such as polydimethylsiloxane, silicone rubber, and 
low-density polyethylene-based nanocomposite have been devel-
oped for potential use in IUDs as novel, safe and pragmatic alterna-
tives for contraceptive applications [116-118]. A cocktail-inspired 
medium-term, reversible male contraceptive strategy was proposed 
by Bao et al. [119], wherein four layers of nanomaterials were inject-
ed sequentially into the vas deferens. The first layer comprised a hy-
drogel for the formation of a physical barrier to sperm, the second 
layer contained gold nanoparticles for heating on irradiation, the 
third layer was made up of ethylenediaminetetraacetic acid (EDTA), 
which functioned as a system for breaking the hydrogel and exter-
minating the sperm, and the fourth layer comprised gold nanoparti-
cles. An in vivo study of this approach in a male rat model exhibited 
inhibition of impregnation of females for more than 2 months. The 
reversible nature of the approach was confirmed, as near-infrared ir-
radiation led to dissolution of all the layers, allowing the rats to con-
ceive [119]. A biodegradable polymer-based point-of-care mi-
cro-needle patch encapsulating contraceptive hormones was devel-
oped by Li et al. [120] and demonstrated sustained release for more 
than a month. 

Conclusion 

In the modern world, maintaining sustainable health of both men 
and women is a major challenge due to rapidly evolving lifestyle 
changes and environmental impact. Several maternal and fetal fac-
tors exhibit a strong correlation with adverse outcomes of children 
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