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Abstract. We study perfect 2-colorings of regular graphs. In particular, we consider the

4-regular case. We obtain a characterization of perfect 2-colorings of toroidal grids.

1. Introduction

Throughout this article, G is a finite connected simple graph with vertex set V
and edge set E. A perfect m-coloring of G with matrix S = [sij ] ; i, j = 1, 2, . . . ,m
is a coloring of V with the colors {1, 2, . . . ,m} such that every vertex of color i
has sij neighbors of color j. Note that if some entry sii > 0, then these are not
proper colorings. The matrix S is called the m-coloring matrix. Two m-coloring
matrices S1 and S2 are called equivalent if there exists a permutation matrix R
such that S2 = RtS1R; this corresponds to permuting the colors. We call a matrix
Sm×m admissible for G if there exists a perfect m-coloring of G with the parameters
sij ; i, j = 1, . . . ,m.

According to the definition, if G admits a perfect m-coloring, then all vertices
of the same color are of the same degree. So a necessary condition for the existence
of a perfect m-coloring of G is that the degree sequence of G contains at most m
different numbers.

In this article we study perfect 2-colorings. We call the first color white, and the
second color black. For a perfect 2-coloring of G, we denote the sets of white and
black vertices by W and B, respectively. The coloring matrix of a perfect 2-coloring
is of the form

S =

[
s11 s12
s21 s22

]
.

The first row and column belong to the white color, and the second row and
column belong to the black color. That means, every white vertex is adjacent to
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s11 white vertices and s12 black vertices, and every black vertex is adjacent to s21
white vertices and s22 black vertices.

2. Perfect 2-Colorings of k-Regular Graphs

In this section we assume that k is a positive integer and G is k-regular. Let S =[
s11 s12
s21 s22

]
be a 2-coloring matrix of G. Naturally s11+s12 = k and s21+s22 = k.

Therefore, the number of possible cases for the first row is k + 1. For each of them,
the number of possible cases for the second row is at most k + 1. So, in general,
there are at most (k + 1)2 matrices some of which are impossible. If s12 = 0, then
no white vertex has a black neighbor. Then the only connected graphs that admit
a perfect 2-coloring with matrix S are those in which all vertices have the same
color. Thus, we assume s12 > 0 and s21 > 0. On the other hand, by interchanging
colors, we have equivalent coloring matrices. Therefore, for 2-coloring matrices, we
can assume 1 ≤ s21 ≤ s12 ≤ k. It follows that:

Lemma 2.1. There are

(
k + 1

2

)
different matrices S for which S is an admissible

2-coloring matrix of some connected k-regular graph.

We describe these matrices as follows:

(2.1) Ai,k−j =

[
k − i + 1 i− 1
j + 1 k − j − 1

]
; i = 2, . . . , k + 1; j = 0, . . . , i− 2.

Lemma 2.2.([1]) Suppose that S =

[
s11 s12
s21 s22

]
is an admissible matrix for G.

We have:

(1) |W | = s21
s12
|B|;

(2) |V | is divisible by
(s12 + s21)

gcd(s12, s21)
.

Proof. Since every white vertex has s12 black neighbors, and every black vertex has
s21 white neighbors, we have s12|W | = s21|B|. In addition, since the order of G is

|W |+ |B| = (s12 + s21)

s21
|W | = (s12 + s21)

s12
|B|,

it follows that |V | is divisible by
(s12 + s21)

gcd(s12, s21)
. 2

Theorem 2.3. For a graph G and with notation as in (2.1), when G is k-regular,
then

(1) Ak+1,1 is admissible for G if and only if G is bipartite;
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(2) if Ak,2 is admissible for G, then |V | is divisible by 4;

(3) if G is bipartite and Ak−1,3 is admissible for G, then |V | is divisible by 4.

Proof. (1) Suppose Ak+1,1 is admissible for G. Since s11 = s22 = 0, no vertex has
a neighbor of the same color as itself. So G is a bipartite graph with bipartition
(W,B). Conversely, suppose G is a bipartite graph with bipartition (X,Y ). Since
G is k-regular, every vertex in X has k neighbors in Y , and every vertex in Y has
k neighbors in X; and also |X| = |Y |. Therefore, G admits a perfect coloring with
matrix Ak+1,1 by taking partite sets as W and B.
(2) Suppose Ak,2 is admissible for G. Since s11 = s22 = 1 and s12 = s21, by Lemma
2.2, the number of white vertices is even and equals the number of black vertices.
Therefore, the order of G must be a multiple of 4.
(3) Suppose Ak−1,3 is admissible for G. Since s11 = s22 = 2, the subgraph of G
induced by the set W is a union of disjoint even cycles, as is the subgraph of G
induced by the set B (note that G is bipartite). On the other hand, since s12 = s21,
the number of white vertices is equal to the number of black vertices. Therefore,
the order of G must be a multiple of 4. 2

3. Perfect 2-Colorings of Toroidal Grids

In this section we consider 4-regular graphs and obtain a characterization of
perfect 2-colorings of toroidal grids. The ten possible 2-coloring matrices for 4-
regular graphs are listed below.

A2,4 =

[
3 1
1 3

]

A3,3 =

[
2 2
2 2

]
, A3,4 =

[
2 2
1 3

]

A4,2 =

[
1 3
3 1

]
, A4,3 =

[
1 3
2 2

]
, A4,4 =

[
1 3
1 3

]

A5,1 =

[
0 4
4 0

]
, A5,2 =

[
0 4
3 1

]
, A5,3 =

[
0 4
2 2

]
, A5,4 =

[
0 4
1 3

]

Definition 3.1. Suppose G1(V1, E1) and G2(V2, E2) are simple graphs. The Carte-
sian product of G1 and G2, written G12G2, is the graph with vertex set V1 × V2

in which (u, v) is adjacent to (u′, v′) if and only if u = u′ and vv′ ∈ E2, or v = v′

and uu′ ∈ E1. Note that the Cartesian product operation is symmetric; that is
G12G2

∼= G22G1.
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Let n,m ≥ 3 be integers. The Cartesian product of two cycles, G = Cn2Cm,
is known as a toroidal grid graph (See Figure 1). According to the definition, the
toroidal grid is a 4-regular graph.

Figure 1: Toroidal grid graph

Suppose V (G) = {(i, j)| 0 ≤ i ≤ n − 1; 0 ≤ j ≤ m − 1}. To show perfect 2-
colorings of G in the next theorems, we consider a part of G as an orthogonal grid,
as shown in Figure 2. We assume that its horizontal paths are of length n such
that the leftmost vertex of each path is adjacent to rightmost vertex of it, and its
vertical paths are of length m such that the topmost vertex of each path is adjacent
to the bottom-most vertex of it. Assume that the vertex in the box is (0, 0). Index
i increases with left-right orientation of the horizontal cycles, and index j increases
with down-up orientation of the vertical cycles.

Figure 2: A part of toroidal grid Cn2Cm

In the following, we investigate necessary and sufficient conditions for the ad-
missibility of each of ten coloring matrices for this class of graphs. Note that since
Cn2Cm

∼= Cm2Cn, in the following results, we can switch conditions from m to n
and vice versa.

Theorem 3.2. Let 3 ≤ n,m <∞. The toroidal grid G = Cn2Cm admits a perfect
2-coloring with matrix A2,4 if and only if m ≡ 0 (mod 4).

Proof. Suppose a perfect 2-coloring with matrix A2,4 exists. Then, since s11 =
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s22 = 3, the subgraph of G induced by the set of white vertices is 3-regular, as
is the subgraph of G induced by the set of black vertices. On the other hand,
s12 = s21 = 1. Thus the number of white vertices is even and equals the number of
black vertices. Therefore, the order of G must be a multiple of 4.

We now show that A2,4 is admissible only for G = Cn2Cm with m ≡ 0 (mod 4).
Since G is vertex-transitive and Cn2Cm

∼= Cm2Cn, without loss of generality,
vertex (0, 0) is black and vertex (0, 1) is white, as shown in Figure 3. Every white
vertex has one black neighbor and every black vertex has one white neighbor. So the
vertices (1, 0), (n− 1, 0), (0,m− 1) are black and the vertices (1, 1), (n− 1, 1), (0, 2)
are white. Continuing in this way, the vertices on cycles {(i, 0)|0 ≤ i ≤ n− 1} and
{(i,m − 1)|0 ≤ i ≤ n − 1} are black, and vertices on cycles {(i, 1)|0 ≤ i ≤ n − 1}
and {(i, 2)|0 ≤ i ≤ n − 1} are white. Assuming m ≡ 0 (mod 4), this coloring can
uniquely be extended to other vertices. Let W = {(i, j)| j ≡ 1 or 2 (mod 4)} and
B = V (G)\W . Then, every vertex in W has three neighbors in W and one neighbor
in B, and every vertex in B has one neighbor in W and three neighbors in B. This
is a perfect 2-coloring with matrix A2,4. 2

Figure 3: Perfect 2-coloring of Cn2Cm with matrix A2,4

Theorem 3.3. Let 3 ≤ n,m <∞. The toroidal grid G = Cn2Cm admits a perfect
2-coloring with matrix A3,3 if and only if m ≡ 0 (mod 2).

Proof. Suppose a perfect 2-coloring with matrix A3,3 exists. Then, since s12 = s21,
we have by Lemma 2.2 that the number of white vertices is equal to the number of
black vertices. So the order of G must be even. Therefore m (or n) must be even.
Let m ≡ 0 (mod 2). The sets W = {(i, j)| j ≡ 0 (mod 2)} and B = V (G) \W give
us a perfect 2-coloring with matrix A3,3. The coloring of a part of graph is shown
in Figure 4. 2

Theorem 3.4. Let 3 ≤ n,m <∞. The toroidal grid G = Cn2Cm admits a perfect
2-coloring with matrix A3,4 if and only if m ≡ 0 (mod 3).

Proof. Suppose a perfect 2-coloring with matrix A3,4 exists. Then, since s12 = 2
and s21 = 1, we have by Lemma 2.2 that 2w = b where w is the number of white
vertices and b is the number of black vertices. So the order of G must be a multiple
of 3. Therefore m (or n) must be a multiple of 3. Let m ≡ 0 (mod 3). The sets
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Figure 4: Perfect 2-coloring of Cn2Cm with matrix A3,3

W = {(i, j)| j ≡ 1 (mod 3)} and B = V (G) \W give us a perfect 2-coloring with
matrix A3,4. The coloring of a part of graph is shown in Figure 5. 2

Figure 5: Perfect 2-coloring of Cn2Cm with matrix A3,4

Theorem 3.5. Let 3 ≤ n,m <∞. The toroidal grid G = Cn2Cm admits a perfect
2-coloring with matrix A4,2 if and only if n ≡ 0 (mod 4) and m ≡ 0 (mod 2).

Proof. Suppose A4,2 is admissible for G. By Lemma 2.3, the order of G must
be a multiple of 4. But this condition is not sufficient. We will show that the
sufficient condition for the existence of this coloring is that n ≡ 0 (mod 4) and
m ≡ 0 (mod 2).

Every white vertex has one white neighbor. According to the structure of
graph, without loss of generality the vertices (0, 0) and (1, 0) are white, as shown in
Figure 6. So the vertices (0, 1), (1, 1), (2, 0), (0,m − 1), (1,m − 1), (n − 1, 0) are all
black. Since (2, 1) is adjacent to two black vertices (1, 1), (2, 0), it must be white.
Similarly, (2,m− 1) is also white. Now consider (3, 0). The vertex (2, 0) has three
white neighbors, (2, 1), (1, 0), (2,m−1), so (3, 0) is black. This vertex has one black
neighbor, so its other neighbors, (4, 0), (3, 1), (3,m − 1) are white. Continuing we
find that in each cycle of length n, every vertex has one neighbor of the same color,
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and in each cycle of length m, the color of verticies changes alternately. Therefore
to complete the coloring we must have n ≡ 0 (mod 4) and m ≡ 0 (mod 2). 2

Figure 6: Perfect 2-coloring of Cn2Cm with matrix A4,2

Theorem 3.6. Let 3 ≤ n,m <∞. The toroidal grid G = Cn2Cm admits a perfect
2-coloring with matrix A4,3 if and only if m,n ≡ 0 (mod 5).

Proof. We specify the colors of the vertices of a 5×5 grid and show that this pattern
repeats in each consecutive 5× 5 grid on n-cycles and m-cycles.

Since G is vertex-transitive, without loss of generality (0, 0) and (1, 0) are
white, as shown in Figure 7. So since s11 = 1, their neighbors, (n − 1, 0), (0,m −
1), (0, 1), (1,m−1), (1, 1), (2, 0) are all black. The vertex (1, 1) is black and must have
two black neighbors. So one of the vertices (2, 1) and (1, 2) is black. Without loss of
generality, (2, 1) is black. The vertices (1, 1) and (2, 1) have two black neighbors, so
the vertices (1, 2) and (2, 2) are white and their neighbors, (0, 2), (1, 3), (2, 3), (3, 2)
are all black. Also, the vertex (3, 1) is white. Thus, the black vertex (3, 2) has two
white neighbors and so (3, 3) is black. Similarly, the vertices (2, 3) and (3, 3) have
two black neighbors, so the vertices (2, 4) and (3, 4) are white and (1, 4) is black.
Now consider (0, 3). Since the black vertex (1, 3) has two black neighbors, the vertex
(0, 3) is white and so (n− 1, 2) is black. Since (n− 1, 1) has three black neighbors,
this vertex and its fourth neighbor, (n − 2, 1), are white. Therefore, (n − 2, 2) is
black and (n − 1, 3) is white. Also, the vertex (n − 1,m − 1) is black. Arguing in
the same way, the vertices (2,m− 1) and (3,m− 1) are white and (3, 0) is black.

Continuing we specify the color of other vertices and find that the pattern of
5 × 5 grid with vertices {(i, j)|i = n − 1, 0, 1, 2, 3; , j = m − 1, 0, 1, 2, 3} repeats in
each consecutive 5 × 5 grid on n-cycles and m-cycles. So to complete the coloring
we must have m,n ≡ 0 (mod 5). 2

Definition 3.7. A set S ⊆ V (G) is called a total dominating set if each vertex
v ∈ V (G) is adjacent to a vertex in S. A total dominating set S is called efficient,
if every vertex v ∈ V (G) is adjacent to exactly one vertex in S.

The above definition immediately implies that G admits a perfect 2-coloring
with matrix A4,4 if and only if G has an efficient total dominating set. Dejter [4]
referred to a efficient total dominating set as a total perfect code. If the induced
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Figure 7: Perfect 2-coloring of Cn2Cm with matrix A4,3

components of a total perfect code in a grid graph are pairwise parallel edges, then
the code is called parallel. Similarly, we call a perfect 2-coloring with matrix A4,4

in toroidal grid parallel, if the edges with white ends are parallel. So we have the
following theorem:

Theorem 3.8. Let 3 ≤ n,m <∞. The toroidal grid G = Cn2Cm admits a parallel
perfect 2-coloring with matrix A4,4 if and only if m,n ≡ 0 (mod 4).

The coloring of a part of graph with matrix A4,4 is shown in Figure 8.

Figure 8: Parallel perfect 2-coloring of Cn2Cm with matrix A4,4

Theorem 3.9. Let 3 ≤ n,m <∞. The toroidal grid G = Cn2Cm admits a perfect
2-coloring with matrix A5,1 if and only if m,n ≡ 0 (mod 2).

Proof. A graph admits a perfect 2-coloring with matrix A5,1 if and only if it is
bipartite. A toroidal grid G = Cn2Cm is bipartite if and only if m,n ≡ 0 (mod 2).
Let W = {(i, j)| i, j ≡ 0 (mod 2)} ∪ {(i, j)| i, j ≡ 1 (mod 2)} and B = V (G) \W .
Clearly (W,B) is a bipartition of G, and therefore gives us a perfect 2-coloring with
matrix A5,1. The coloring of a part of the graph is shown in Figure 9. 2

Theorem 3.10. Let 3 ≤ n,m <∞. The toroidal grid G = Cn2Cm does not admit
a perfect 2-coloring with matrix A5,2.
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Figure 9: Perfect 2-coloring of Cn2Cm with matrix A5,1

Proof. Suppose a perfect 2-coloring with matrix A5,2 exists. Then, since s11 = 0
and s22 = 1, the neighbors of each white vertex are all black, and every black
vertex has exactly one black neighbor. Since G is vertex-transitive and Cn2Cm

∼=
Cm2Cn, without loss of generality, (0, 0) and (1, 0) are black. So their neighbors,
(0, 1), (1, 1), (n − 1, 0), (2, 0), (0,m − 1), (1,m − 1), are all white. According to the
structure of the graph, this contradicts that the set of white vertices is independent.
Because, (0, 1) is adjacent to (1, 1), and also (0,m− 1) is adjacent to (1,m− 1). 2

Theorem 3.11. Let 3 ≤ n,m < ∞. The toroidal grid G = Cn2Cm admits a
perfect 2-coloring with matrix A5,3 if and only if m,n ≡ 0 (mod 3).

Proof. As shown in Figure 10, we specify the colors of the vertices of a 3×3 grid with
vertices {(i, j)|i = n− 1, 0, 1; j = m− 1, 0, 1} (the details are similar to the proof of
Theorem 3.6). Continuing we can specify the color of other vertices and find that
this pattern repeats in each consecutive 3× 3 grid on n-cycles and m-cycles. So the
necessary and sufficient condition for the existence of this coloring is that m,n ≡ 0
(mod 3). 2

Figure 10: Perfect 2-coloring of Cn2Cm with matrix A5,3

Theorem 3.12. Let 3 ≤ n,m < ∞. The toroidal grid G = Cn2Cm admits a
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perfect 2-coloring with matrix A5,4 if and only if m,n ≡ 0 (mod 5).

Proof. As in the proof of Theorem 3.11, we can specify the colors of the vertices of
a 5 × 5 grid and show that this pattern repeats in each consecutive 5 × 5 grid on
n-cycles and m-cycles. So the necessary and sufficient condition for the existence
of this coloring is that m,n ≡ 0 (mod 5). The coloring of a part of graph is shown
in Figure 11. 2

Figure 11: Perfect 2-coloring of Cn2Cm with matrix A5,4
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