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Abstract. In this article we consider the following system of piecewise linear difference

equations: xn+1 = |xn| − yn − 1 and yn+1 = xn + |yn| − 1. We show that when the initial

condition is an element of the closed second or fourth quadrant the solution to the system

is either a prime period-3 solution or one of two prime period-4 solutions.

1. Introduction

Nearly ten years ago we began studying the global behavior of the following
system of piecewise linear difference equations

(N)


xn+1 = |xn|+ ayn + b

, n = 0, 1, . . .

yn+1 = xn + c|yn|+ d

where the initial condition (x0, y0) ∈ R2 and the parameters a, b, c, and d ∈
{−1, 0, 1}. Since each parameter can be one of three values, there are 81 systems.
Each system is designated a number N which is given by

N = 27(a+ 1) + 9(b+ 1) + 3(c+ 1) + (d+ 1) + 1.
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Our purpose is to find patterns of behavior in order to better understand piece-
wise linear difference equations in general. We hope to develop methods to deter-
mine local asymptotic stability and global stability of such systems. The lack of
these methods is evident by the fact that the global behavior of the Lozi equation
and the Gingerbreadman Map (both can be expressed as a system of piecewise
linear difference equations) are still not completely known. See [1, 2, 3, 5, 6].

After determining the global behavior of many of the 81 systems, we noticed a
few trends. See [3, 4, 7, 8, 9]. Over half of the systems have exactly one equilibrium
point, while some have two or three, and the remaining systems either have none
or have infinitely many (which usually reside on a line). About a quarter of the
systems have periodic solutions that are similar to the solutions of System(7). We
were able to generalize a few systems; that is, we know their global behavior when
some of the parameters are elements of R+, not just elements of {−1, 0, 1}. Within
the next year we hope to complete a monograph that will share our results, detailed
proofs, conjectures and open problems of all 81 systems.

Some of these systems are rather enigmatic. System(7) is one of them. It is the
special case of System(N) where a = b = d = −1 and c = 1:

(7)


xn+1 = |xn| − yn − 1

, n = 0, 1, . . . .

yn+1 = xn + |yn| − 1

After months of brute force calculations, we only had a partial result. Wirot Tikjha
shared this partial result in the 2016 International Conference on Difference Equa-
tions and Applications. See [7]. At the time of that presentation we knew the
behavior of the system for only a small set of initial conditions (a section of the
x-axis). Since the presentation, with the aid of computer simulations using random
initial values, we were able to extend the set of initial conditions to include the
closed second and fourth quadrant.

In this paper we show that when the initial condition (x0, y0) is an element in
the closed second or fourth quadrant System(7) has one prime period-3 solution
and two prime period-4 solutions given by

P 1
3 =



−1

3
, −1

1

3
, −1

3

−1

3
, −1

3


, P 1

4 =



−1, −1

1, −1

1, 1

−1, 1


, and P 2

4 =



1, −3

3, 3

−1, 5

−5, 3


;

where

a1, a2
b1, b2
c1, c2

 represents the consecutive solutions (a1, a2), (b1, b2), and (c1, c2)
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of the system. Please note that at the end of this article we share our conjecture
for the global behavior of this system.

A solution {(xn, yn)}∞n=0 of a system of difference equations is called eventually
periodic with prime period-p or eventually prime period-p solution if there exists
an integer N > 0 and p is the smallest positive integer such that {(xn, yn)}∞n=N is
periodic with period-p; that is,

(xn+p, yn+p) = (xn, yn) for all n ≥ N.

2. Main Results

Set L1 = {(1, y)|y ≥ 0}, L2 = {(1, y)|y ≤ 0}, L3 = {(−1, y)|y ≥ 0},
L4 = {(−1, y)|y ≤ 0}, L5 = {(x,−1)|x ∈ R}, Q2 = {(x, y)|x ≤ 0, y ≥ 0},
Q4 = {(x, y)|x ≥ 0, y ≤ 0}.

Theorem 2.1. Let {(xn, yn)}∞n=0 be a solution of System(7) with (x0, y0) ∈ Q2∪Q4.
Then {(xn, yn)}∞n=0 is eventually the prime period-3 solution P 1

3 or the prime period-
4 solution P 1

4 or P 2
4 .

The proof of the theorem is a consequence of the following lemmas.

Lemma 2.2. Suppose the initial condition (x0, y0) ∈ L1 ∪ L4. Then solution of
System(7), {(xn, yn)}∞n=2 is the prime period-4 solution P 1

4 .

Proof. Let (x0, y0) ∈ L1. Then (x2, y2) = (−1,−1) ∈ P 1
4 . Let (x0, y0) ∈ L4. Then

x1 = |x0| − y0 − 1 = −y0 ≥ 0

y1 = x0 + |y0| − 1 = −y0 − 2.

If y1 = −y0 − 2 < 0, then

x2 = |x1| − y1 − 1 = 1

y2 = x1 + |y1| − 1 = 1.

If y1 = −y0 − 2 ≥ 0, then

x2 = |x1| − y1 − 1 = 1

y2 = x1 + |y1| − 1 = −2y0 − 3 > 0.

Note that (x2, y2) ∈ L1 and therefore (x4, y4) ∈ P 1
4 . 2

Claim 2.3. Assume that there is a positive integer N such that yN = −xN −2 ≥ 0.
Then {(xn, yn)}∞n=N+1 is the prime period-4 solution P 2

4 .

Proof. Suppose (xN , yN ) satisfies the hypothesis, then

xN+1 = |xN | − yN − 1 = −xN + xN + 2− 1 = 1

yN+1 = xN + |yN | − 1 = xN − xN − 2− 1 = −3.
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Then the proof is complete. 2

Lemma 2.4. Suppose the initial condition (x0, y0) ∈ L2. Then {(xn, yn)}∞n=0

is eventually the prime period-4 solution P 1
4 or P 2

4 .

Proof. Let (x0, y0) ∈ L2. Then

x1 = |x0| − y0 − 1 = −y0 > 0

y1 = x0 + |y0| − 1 = −y0 > 0

x2 = |x1| − y1 − 1 = −1

y2 = x1 + |y1| − 1 = −2y0 − 1.

Suppose y2 = −2y0 − 1 < 0, then (x2, y2) ∈ L4. We now apply Lemma 2.2. and
find that {(xn, yn)}∞n=4 is the prime period-4 solution P 1

4 .

Suppose y2 = −2y0 − 1 ≥ 0, that is y0 ≤ −
1

2
, then

x3 = |x2| − y2 − 1 = 2y0 + 1 ≤ 0

y3 = x2 + |y2| − 1 = −2y0 − 3.

Suppose y3 = −2y0 − 3 ≥ 0, that is y0 ≤ −
3

2
, then

x4 = |x3| − y3 − 1 = 1

y4 = x3 + |y3| − 1 = −3,

and so (x4, y4) ∈ P 2
4 , as required.

Suppose y3 = −2y0− 3 < 0, that is −3

2
< y0 ≤ −

1

2
, then we will progress using

mathematical induction. For each integer n ≥ 0, let

an =
−22n+1 − 1

22n+1
, bn =

−22n+1 + 1

22n+1
, cn =

−22n + 1

22n
, and δn = 22n − 1.

Observe that

−3

2
= a0 < a1 < a2 < . . . < −1 and lim

n→∞
an = −1,

−1

2
= b0 > b1 > b2 > . . . > −1 and lim

n→∞
bn = −1,

0 = c0 > c1 > c2 > . . . > −1 and lim
n→∞

cn = −1.

Furthermore for each integer n ≥ 1, let P(n) be the following set of statements.
When y0 ∈ (an−1, bn−1], we have

x4n = 1

y4n = 22ny0 + δn.
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When y0 ∈ [cn, bn−1], we have y4n ≥ 0, and so the solution is eventually the prime
period-4 solution P 1

4 .
When y0 ∈ (an−1, cn), we have y4n < 0. Then

x4n+1 = −22ny0 − δn > 0

y4n+1 = −22ny0 − δn > 0

x4n+2 = −1

y4n+2 = −22n+1y0 − (2δn + 1).

When y0 ∈ [bn, cn), we have y4n+2 ≤ 0, and so the solution is eventually the prime
period-4 solution P 1

4 .
When y0 ∈ (an−1, bn), we have y4n+2 > 0. Then

x4n+3 = 22n+1y0 + (2δn + 1) < 0

y4n+3 = −22n+1y0 − (2δn + 3).

When y0 ∈ (an−1, an], we have y4n+3 ≥ 0, and so the solution is eventually the
prime period-4 solution P 2

4 .
Finally, when y0 ∈ (an, bn], we have y4n+3 < 0.
We shall now show that P(1) is true. For y0 ∈ (a1−1, b1−1] = (a0, b0] =(
−3

2
,−1

2

]
, recall that x3 = 2y0 + 1 ≤ 0 and y3 = −2y0 − 3 < 0, then

x4(1) = x4 = |x3| − y3 − 1 = 1

y4(1) = y4 = x3 + |y3| − 1 = 4y0 + 3 = 22(1)y0 + δ1.

When y0 ∈ [c1, b1−1] = [c1, b0] =

[
−3

4
,−1

2

]
, then y4 = 4y0 + 3 ≥ 0. We apply

Lemma 2.2. and find that {(xn, yn)}∞n=6 is the prime period-4 solution P 1
4 .

When y0 ∈ (a1−1, c1) = (a0, c1) =

(
−3

2
,−3

4

)
, then y4 = 4y0 + 3 < 0. Thus

x4(1)+1 = x5 = −4y0 − 3 = −22(1)y0 − δ1 > 0

y4(1)+1 = y5 = −4y0 − 3 = −22(1)y0 − δ1 > 0

x4(1)+2 = x6 = −1

y4(1)+2 = y6 = −8y0 − 7 = −22(1)+1y0 − (2δ1 + 1).

When y0 ∈ [b1, c1) =

[
−7

8
,−3

4

)
, then y6 = −8y0 − 7 ≤ 0. We apply Lemma 2.2.

and find that {(xn, yn)}∞n=8 is the prime period-4 solution P 1
4 .

When y0 ∈ (a1−1, b1) = (a0, b1) =

(
−3

2
,−7

8

)
, then y6 = −8y0 − 7 > 0. Thus

x4(1)+3 = x7 = 8y0 + 7 = 22(1)+1y0 + 2δ1 + 1 < 0

y4(1)+3 = y7 = −8y0 − 9 = −22(1)+1y0 − (2δ1 + 3).
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When y0 ∈ (a1−1, a1] = (a0, a1] =

(
−3

2
,−9

8

]
, then y7 = −x7 − 2 = −8y0 − 9 ≥ 0.

We apply Claim 2.3. and find that {(xn, yn)}∞n=8 is the prime period-4 solution P 2
4 .

When y0 ∈ (a1, b1] =

(
−9

8
,−7

8

]
, then y7 = −8y0 − 9 < 0. Hence P(1) is true.

Next, we assume that P(N) is true. We shall show that P(N + 1) is true. Since

P(N) is true, we know that when y0 ∈ (aN , bN ] =

(
−22N+1 − 1

22N+1
,
−22N+1 + 1

22N+1

]
, we

have

x4N+3 = 22N+1y0 + (2δN + 1) < 0

y4N+3 = −22N+1y0 − (2δN + 3) < 0.

Then,

x4(N+1) = x4N+4 = 1

y4(N+1) = y4N+4 = 22(N+1)y0 + 4δN + 3 = 22(N+1)y0 + δN+1.

Note that

δN+1 = 22(N+1) − 1 = 22N+2 − 1 = 22N+2 − 4 + 3 = 4δN + 3.

If y0 ∈ [cN+1, b(N+1)−1] = [cN+1, bN ] =

[
−22N+2 + 1

22N+2
,
−22N+1 + 1

22N+1

]
, then

y4N+4 = 22(N+1)y0 + δN+1 = 22N+2y0 + 22N+2 − 1 ≥ 0.

Applying Lemma 2.2., we see that {(xn, yn)}∞n=4N+6 is the prime period-4 solution
P 1
4 .

If y0 ∈ (a(N+1)−1, cN+1) = (aN , cN+1) =

(
−22N+1 − 1

22N+1
,
−22N+2 + 1

22N+2

)
, then

y4N+4 = 22(N+1)y0 + δN+1 = 22N+2y0 + 22N+2 − 1 < 0.

Thus,

x4(N+1)+1 = x4N+5 = −22(N+1)y0 − δN+1 > 0

y4(N+1)+1 = y4N+5 = −22(N+1)y0 − δN+1 > 0

x4(N+1)+2 = x4N+6 = −1

y4(N+1)+2 = y4N+6 = −22(N+1)+1y0 − (2δN+1 + 1).

If y0 ∈ [bN+1, cN+1) =

[
−22N+3 + 1

22N+3
,
−22N+2 + 1

22N+2

)
, then

y4N+6 = −22(N+1)+1y0 − 2δN+1 − 1 = −22N+3y0 − 22N+3 + 1 ≤ 0.
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Applying Lemma 2.2., we see that {(xn, yn)}∞n=4N+8 is the prime period-4 solution
P 1
4 .

If y0 ∈ (a(N+1)−1, bN+1) = (aN , bN+1) =

(
−22N+1 − 1

22N+1
,
−22N+3 + 1

22N+3

)
, then

y4N+6 = −22(N+1)+1y0 − 2δN+1 − 1 = −22N+3y0 − 22N+3 + 1 > 0,

thus

x4(N+1)+3 = x4N+7 = 22(N+1)+1y0 + (2δN+1 + 1) < 0

y4(N+1)+3 = y4N+7 = −22(N+1)+1y0 − (2δN+1 + 3).

If y0 ∈ (a(N+1)−1, aN+1] = (aN , aN+1] =

(
−22N+1 − 1

22N+1
,
−22N+3 − 1

22N+3

]
, then

y4N+7 = −22(N+1)+1y0 − (2δN+1 + 3) = −22N+3y0 − 22N+3 − 1 ≥ 0.

We note that y4N+7 = −x4N+7 − 2 ≥ 0. Applying Claim 2.3., we see that
{(xn, yn)}∞n=4N+8 is the prime period-4 solution P 2

4 .

If y0 ∈ (a(N+1), bN+1] = (aN+1, bN+1] =

(
−22N+3 − 1

22N+3
,
−22N+3 + 1

22N+3

]
, then

y4N+7 = −22(N+1)+1y0 − (2δN+1 + 3) = −22N+3 − 22N+3 − 1 < 0.

Hence, P(N + 1) is true. Therefore P(n) is true for all n ≥ 1.
Note that lim

n→∞
an = lim

n→∞
bn = lim

n→∞
cn = −1 and (1,−1) ∈ P 1

4 . 2

Lemma 2.5. Suppose the initial condition (x0, y0) ∈ L3. Then {(xn, yn)}∞n=0 is
eventually the prime period-4 solution P 1

4 or P 2
4 .

Proof. Suppose (x0, y0) ∈ L3. Then by direct computations we see that x2 = 1.
We now apply Lemmas 2.2. and 2.4., and see that {(xn, yn)}∞n=0 is eventually the
prime period-4 solution P 1

4 or P 2
4 . 2

Claim 2.6. Assume that there is a positive integer N such that xN = yN ≥ 0.
Then, {(xn, yn)}∞n=N is eventually the prime period-4 solution P 1

4 or P 2
4 .

Proof. Suppose that (xN , yN ) satisfies the hypothesis, then xN+1 = −1. We apply
Lemmas 2.2. and 2.5., and see that {(xn, yn)}∞n=N is eventually the prime period-4
solution P 1

4 or P 2
4 . 2

Lemma 2.7. Suppose the initial condition (x0, y0) ∈ L5. Then {(xn, yn)}∞n=0 is
eventually the prime period-3 solution P 1

3 or the prime period-4 solution P 1
4 or P 2

4 .

Proof. Suppose that (x0, y0) ∈ L5 and suppose further that x0 ≥ 0. Then x1 =
y1 = x0. We apply Claim 2.6., and find that {(xn, yn)}∞n=0 is eventually the prime
period-4 solution P 1

4 or P 2
4 .
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Now suppose that (x0, y0) ∈ L5 but x0 ≤ 0. Then

x1 = |x0| − y0 − 1 = −x0 + 1− 1 = −x0 > 0

y1 = x0 + |y0| − 1 = x0 + 1− 1 = x0 < 0

x2 = |x1| − y1 − 1 = −x0 − x0 − 1 = −2x0 − 1

y2 = x1 + |y1| − 1 = −x0 − x0 − 1 = −2x0 − 1.

If x2 = y2 = −2x0 − 1 ≥ 0, that is x0 ≤ − 1
2 , then we can apply Claim 2.6. and

see that {(xn, yn)}∞n=0 is eventually the prime period-4 solution P 1
4 or P 2

4 .

If x2 = y2 = −2x0 − 1 < 0, that is −1

2
< x0 < 0. Then

x3 = |x2| − y2 − 1 = 2x0 + 1 + 2x0 + 1− 1 = 4x0 + 1

y3 = x2 + |y2| − 1 = −2x0 − 1 + 2x0 + 1− 1 = −1.

If x3 = 4x0 + 1 ≥ 0, then since (x3, y3) ∈ L5 by the above case, we see that
{(xn, yn)}∞n=0 is eventually the prime period-4 solution P 1

4 or P 2
4 .

If x3 = 4x0 + 1 < 0, that is −1

2
< x0 < −

1

4
, then we will progress by using

mathematical induction.
For each integer n ≥ 0, let

an =
−22n+1 − 1

3× 22n+1
, bn =

−22n+2 + 1

3× 22n+2
and δn =

22n − 1

3
.

Observe that

−1

2
= a0 < a1 < a2 < . . . < −1

3
and lim

n→∞
an = −1

3
,

−1

4
= b0 > b1 > b2 > . . . > −1

3
and lim

n→∞
bn = −1

3
.

Furthermore for each integer n ≥ 1, let P (n) be the following set of statements.
When x0 ∈ (an−1, bn−1), we have

x3n+1 = −22nx0 − δn > 0

y3n+1 = 22nx0 + δn < 0

x3n+2 = −22n+1x0 − (2δn + 1)

y3n+2 = −22n+1x0 − (2δn + 1).

When x0 ∈ (an−1, an], we have x3n+2 = y3n+2 ≥ 0, and so by Claim 2.6.
{(xn, yn)}∞n=0 is eventually the prime period-4 solution P 1

4 or P 2
4 . When x0 ∈

(an, bn−1), we have x3n+2 = y3n+2 < 0, and so

x3n+3 = 22n+2x0 + 4δn + 1

y3n+3 = −1.
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When x0 ∈ [bn, bn−1), we have x3n+3 ≥ 0, and so by Claim 2.6. {(xn, yn)}∞n=0 is
eventually the prime period-4 solution P 1

4 or P 2
4 .

Finally, when x0 ∈ (an, bn), we have x3n+3 < 0.

We shall show that P(1) is true.

For x0 ∈ (an−1, bn−1) = (a0, b0) =

(
−1

2
,−1

4

)
, recall that x3 = 4x0 + 1 < 0

and y3 = −1. Then,

x3(1)+1 = x4 = −4x0 − 1 = −22(1)x0 − δ1 > 0

y3(1)+1 = y4 = 4x0 + 1 = 22(1)x0 + δ1 < 0

x3(1)+2 = x5 = −8x0 − 3 = −22(1)+1x0 − (2δ1 + 1)

y3(1)+2 = y5 = −8x0 − 3 = −22(1)+1x0 − (2δ1 + 1).

If x0 ∈ (a1−1, a1] = (a0, a1] =

(
−1

2
,−3

8

]
, then x5 = y5 = −8x0 − 3 ≥ 0, and

so we apply Claim 2.6. and see that {(xn, yn)}∞n=0 is eventually the prime period-4
solution P 1

4 or P 2
4 .

If x0 ∈ (a1, b1−1) = (a1, b0) =

(
−3

8
,−1

4

)
, then x5 = y5 = −8x0 − 3 < 0, and

so

x3(1)+3 = x6 = 16x0 + 5 = 22(1)+2x0 + 4δ1 + 1

y3(1)+3 = y6 = −1.

If x0 ∈ [b1, b1−1) = [b1, b0) =

[
− 5

16
,−1

4

)
, then x6 = 16x0 + 5 ≥ 0, and

(x6, y6) ∈ L5. Applying earlier work in this proof we see that {(xn, yn)}∞n=0 is
eventually the prime period-4 solution P 1

4 or P 2
4 .

If x0 ∈ (a1, b1) =

(
−3

8
,− 5

16

)
, then x6 = 16x0 + 5 < 0. Hence P(1) is true.

Suppose that P(N) is true. We shall show that P(N + 1) is true.

Since P(N) is true, we know that x0 ∈ (a(N+1)−1, b(N+1)−1) = (aN , bN ) =(
−22N+1 − 1

3× 22N+1
,
−22N+2 + 1

3× 22N+2

)
, and

x3N+3 = 22N+2x0 + 4δN + 1 < 0

y3N+3 = −1.

Note that

δN+1 =
22(N+1) − 1

3
=

22N+2 − 4

3
+

3

3
= 4

(
22N − 1

3

)
+ 1 = 4δN + 1.
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Then

x3(N+1)+1 = x3N+4 = −22N+2 − 4δN − 1 = −22(N+1)x0 − δN+1 > 0

y3(N+1)+1 = y3N+4 = 22N+2 + 4δN + 1 = 22(N+1)x0 + δN+1 < 0

x3(N+1)+2 = x3N+5 = −22(N+1)+1x0 − (2δN+1 + 1)

y3(N+1)+2 = y3N+5 = −22(N+1)+1x0 − (2δN+1 + 1).

If x0 ∈ (a(N+1)−1, aN+1] = (aN , aN+1] =

(
−22N+1 − 1

3× 22N+1
,
−22N+3 − 1

3× 22N+3

]
, then

x3N+5 = y3N+5 = −22(N+1)+1x0− (2δN+1 + 1) = −22N+3x0 +

(
−22N+3 − 1

3

)
≥ 0,

and so we apply Claim 2.6. and see that {(xn, yn)}∞n=0 is eventually the prime
period-4 solution P 1

4 or P 2
4 .

If x0 ∈ (aN+1, b(N+1)−1) = (aN+1, bN ) =

(
−22N+3 − 1

3× 22N+3
,
−22N+2 + 1

3× 22N+2

)
, then

x3N+5 = y3N+5 = −22(N+1)+1x0− (2δN+1 + 1) = −22N+3x0 +

(
−22N+3 − 1

3

)
< 0,

and so

x3(N+1)+3 = x3N+6 = 22(N+1)+2x0 + 4δN+1 + 1

y3(N+1)+3 = y3N+6 = −1.

If x0 ∈ [bN+1, b(N+1)−1) = [bN+1, bN ) =

[
−22N+4 + 1

3× 22N+4
,
−22N+2 + 1

3× 22N+2

)
, then

x3N+6 = 22(N+1)+2x0 + 4δN+1 + 1 = 22N+4x0 +
22N+4 − 1

3
≥ 0,

and (x3N+6, y3N+6) ∈ L5 so by previous work in this proof {(xn, yn)}∞n=0 is even-
tually the prime period-4 solution P 1

4 or P 2
4 .

If x0 ∈ (aN+1, bN+1) =

(
−22N+3 − 1

3× 22N+3
,
−22N+4 + 1

3× 22N+4

)
, then

x3N+6 = 22(N+1)+2x0 + 4δN+1 + 1 = 22N+4x0 +
22N+4 − 1

3
< 0.

Hence, P(N + 1) is true. Therefore P(n) is true for all n ≥ 1.
Please note that

lim
n→∞

an = lim
n→∞

bn = −1

3
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and (x0, y0) =

(
−1

3
,−1

)
∈ P 1

3 . 2

Lemma 2.8. Suppose the initial condition (x0, y0) ∈ Q2. Then {(xn, yn)}∞n=0 is
eventually the prime period-4 solution P 1

4 or P 2
4 .

Proof. Let (x0, y0) ∈ Q2. Then

x1 = |x0| − y0 − 1 = −x0 − y0 − 1

y1 = x0 + |y0| − 1 = x0 + y0 − 1.

Case 1: Suppose −x0 = y0, then (x1, y1) = (−1,−1) ∈ P 1
4 .

Case 2: Suppose −x0 > y0, then y1 = x0 + y0 − 1 < 0.
Suppose further that x1 = −x0 − y0 − 1 < 0, then

x2 = |x1| − y1 − 1 = 1

y2 = x1 + |y1| − 1 = −2x0 − 2y0 − 1.

We see that (x2, y2) ∈ L1 ∪ L2. Applying Lemmas 2.2. and 2.4., we see that
{(xn, yn)}∞n=0 is eventually the prime period-4 solution P 1

4 or P 2
4 .

Now suppose that x1 = −x0 − y0 − 1 ≥ 0, then

x2 = |x1| − y1 − 1 = −2x0 − 2y0 − 1 > 0

y2 = x1 + |y1| − 1 = −2x0 − 2y0 − 1 > 0

x3 = |x2| − y2 − 1 = −1

y3 = x2 + |y2| − 1 = −4x0 − 4y0 − 3 > 0.

We apply Lemma 2.5., and see that {(xn, yn)}∞n=0 is eventually the prime period-
4 solution P 1

4 or P 2
4 .

Case 3: Suppose −x0 < y0, then

x1 = −x0 − y0 − 1 < 0

x2 = |x1| − y1 − 1 = 1.

We apply Lemmas 2.2. and 2.4., and the proof is complete. 2

Lemma 2.9. Suppose the initial condition (x0, y0) ∈ Q4. Then {(xn, yn)}∞n=0 is
eventually the prime period-3 solution P 1

3 or the prime period-4 solution P 1
4 or P 2

4 .

Proof. Let (x0, y0) ∈ Q4. Then,

x1 = |x0| − y0 − 1 = x0 − y0 − 1

y1 = x0 + |y0| − 1 = x0 − y0 − 1.

Suppose x0 − y0 − 1 ≥ 0, then we apply Claim 2.6. and see that {(xn, yn)}∞n=0

is eventually the prime period-4 solution P 1
4 or P 2

4 .
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Suppose that x0 − y0 − 1 < 0, then

y2 = x1 + |y1| − 1 = −1.

We see that (x2, y2) ∈ L5. By Lemma 2.7. {(xn, yn)}∞n=N is eventually the prime
period-3 solution P 1

3 or the prime period-4 solution P 1
4 or P 2

4 . 2

3. Discussion and Conclusion

Returning our attention to the original family of System(N), number 7 of this
group is one of the most interesting systems. Initially, when we only understood
its behavior for a small set of initial conditions (a segments on x-axis), we were
only able to prove that every solution was eventually prime period-4. See Ref. [7].
Now that we are able to include the closed second and fourth quadrant in the set
of initial conditions we see that this is one of the few systems that exhibit solutions
of varying periodicity. Although we have not yet proved the global behavior of
System(7) we have a conjecture.

Conjecture 3.1. Let {(xn, yn)}∞n=0 be a solution of System(7) with (x0, y0) ∈ R2.

Then {(xn, yn)}∞n=0 is the unique equilibrium

(
−1

5
,−3

5

)
, or eventually the prime

period-3 solution P 1
3 or P 2

3 , or the prime period-4 solution P 1
4 or P 2

4 where

P 1
3 =



−1

3
, −1

1

3
, −1

3

−1

3
, −1

3


, P 2

3 =



3

5
,

1

5

−3

5
, −1

5

−1

5
, −7

5


, P 1

4 =



−1, −1

1, −1

1, 1

−1, 1


, and P 2

4 =



1, −3

3, 3

−1, 5

−5, 3


.
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