DOI QR코드

DOI QR Code

차세대 웨어러블 디바이스를 위한 높은 기계적/전기적 특성을 갖는 CNT-Ni-Fabric 유연기판

CNT-Ni-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices

  • 김형구 (전남대학교 신화학소재공학과) ;
  • 노호균 (전남대학교 CORE 에너지 융복합 전문 핵심연구지원센터) ;
  • 차안나 (전남대학교 신화학소재공학과) ;
  • 이민정 (전남대학교 신화학소재공학과) ;
  • 하준석 (전남대학교 신화학소재공학과)
  • Kim, Hyung Gu (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Rho, Ho Kyun (Energy Convergence Core Facility, Chonnam National University) ;
  • Cha, Anna (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Lee, Min Jung (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 투고 : 2020.06.12
  • 심사 : 2020.06.26
  • 발행 : 2020.06.30

초록

최근 웨어러블 장치에 적용하기 위한 유연성 기판에 대한 연구가 활발히 진행되고 있다. 특히, 유연성 기판 중 의복에 웨어러블 장치를 적용하기 위한 전도성 섬유기판에 대한 연구가 진행되고 있다. 본 연구에서는, 면섬유 기판 표면에 CNT와 Pd복합 용액을 스프레이 법을 이용하여 형성하였고, 무전해 도금법을 이용하여 금속층을 도금하였다. 도금된 섬유기판의 형상을 분석하기 위하여 SEM 장비를 이용하였고, CNT를 증착한 섬유기판의 표면에 Ni 레이어가 형성된 것을 확인하였다. EDS 분석을 통하여 섬유기판의 표면에 형성된 물질이 Ni임을 알 수 있었다. 전기적 특성을 확인하기 위하여 4-point probe로 무전해 도금을 진행한 섬유기판의 표면저항 및 저항 분포를 확인하기 위한 맵핑을 진행하였다. 무전해 도금의 진행 시간이 길어질수록 전도성이 향상되었음을 확인할 수 있었고, 표면 위치 별 저항의 분포가 균일함을 알 수 있었다. 인장력, 굽힘, 뒤틀림 시험을 통하여 기계적 스트레스로 인한 저항변화를 측정하였다. 그 결과 도금 시간이 길어질수록 유연성 기판의 저항변화가 점점 사라지는 것을 확인하였다. UTM(Universal testing machine)을 이용하여 도금시간 변화에 대한 무전해 도금 기판의 기계적 특성 향상 여부에 대하여 분석하였다. 인장강도는 무전해 도금을 2 시간 동안 진행한 전도성 섬유기판의 경우, 면섬유 기판보다 약 16 MPa 증가하였다. 이러한 결과들을 토대로 Ni-CNT-Fabric 유연기판은 의류 일체형 전도성 기판으로 이용되기에 충분함을 확인하였고, 이러한 연구 결과는 유연기판, 웨어러블 디바이스뿐만 아니라 유연성이 필요한 배터리, 촉매, 태양전지 등에 적용되어 발전에 기여할 수 있을 것으로 기대한다.

Recently, numerous researches are being conducted in flexible substrate to apply to wearable devices. Particularly, Conductive substrate researches that can implement the wearable devices on clothing are massive. In this study, we formed fiber substrate spraying CNT and Pd mixed solution on it and plated metal layer with electroless plating. Used SEM equipment and EDS analysis to analysis structure of the plated fiber substrate and discovered Ni layer was created. For check electrical properties, mapping was performed to check surface resistance and distribution of resistance of electroless plated fiber substrate with 4-point probe. It was confirmed that conductivity was improved as the duration of electroless plating was increased, and it was found that distribution of resistance by surface location was uniform. Changes in resistance due to mechanical stress were measured through tensile, bending, and twisting tests. As a result, it was confirmed that resistance change of flexible substrate gradually disappeared as plating time increased. Using UTM (Universal testing machine), it was analyzed mechanical properties of the electroless plated substrate with respect to changes in plating time were improved. In the case of conductive fiber substrate in which electroless plating was performed for 2 hours, tensile strength was increased by 16 MPa than fiber substrate. Based on these results, we found that Ni-CNT-Fabric flexible substrate is adequate for clothing-intergrated conductive substrate and we positively expect that this experiment shows flexible substrate can adapt to and develop not only a wearable device technology but also other fields needing flexibility such as battery, catalyst and solar cell.

키워드

참고문헌

  1. J. S. Yang and J. Y. Kim, "A case study on the fashion wearable device development", Journal of the Korean Society Design Culture, 21, 363 (2015),
  2. J. H. Lee, J. Y. Song, S. M. Kim, Y. J. Kim, and A. Y. Park, "Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly", J. Microelectron. Packag. Soc., 26(2), 31 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.0031
  3. J. F. Gu, S. Gorgutsa, and M. Skorobogatiy, "Soft capacitor fibers using conductive polymers for electronic textiles", Smart Mater. Struct., 19(11), 1 (2010).
  4. D. D. Rossi, A. D. Santa, and A. Mazzoldi, "Dressware: wearable hardware", Mater. Sci. Eng. C, 7(1), 31 (1999). https://doi.org/10.1016/S0928-4931(98)00069-1
  5. M. Engin, A. Demirel, E. Z. Engin, and M. Fedakar, "Recent developments and trends in biomedical sensors", Measurement, 37(2), 173 (2005). https://doi.org/10.1016/j.measurement.2004.11.002
  6. S. T. Senthilkumar and R. Kalai Selvan, "Fabrication and performance studies of a cable-type flexible asymmetric supercapacitor", Phys. Chem. Chem. Phys, 16, 15692 (2014). https://doi.org/10.1039/c4cp00955j
  7. Z. Zhang, F. Xiao, and S. Wang, "Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors", J. Mater. Chem. A, 3, 11215 (2015). https://doi.org/10.1039/C5TA02331A
  8. X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, and G. Shen, "Fiber-Based Flexible All-Solid-State Asymmetric Supercapacitors for Integrated Photodetecting System", Angew. Chem. Int. Ed., 53(7), 1849 (2014). https://doi.org/10.1002/anie.201307581
  9. D. Gao and M. Zhan, "Fabrication and electrical properties of metal-coated acrylate rubber microspheres by electroless plating", Appl. Surf. Sci., 255(7), 4185 (2009). https://doi.org/10.1016/j.apsusc.2008.11.007
  10. X. Gu, G. Xue, S. Jin, and F. Li, "FTIR-RAS Studies of the Coordination of Surface Oxide Layers of Copper with Poly(acrylonitrile)", Spectrosc. Lett., 30(1), 139 (1997). https://doi.org/10.1080/00387019708002595
  11. D. S. Eun, D. W. Kim, C. T. Seo, J. H Lee, Y. H Bae, I. S. Yu, and C. G. Suk, "Photoresist Spray Coating for Resist Film Performance of Deep Silicon Cavities", J. Korean Physical Society, 50(6), 1947 (2007). https://doi.org/10.3938/jkps.50.1947
  12. N. Atthi, K. Saejok, J. Supadech, W. Jeamsaksiri, O. Thongsuk, P. Dulyaseree, C. Hruanun, and A. Poyai, "Improvement of Photoresist Film Coverage on High Topology Surface with Spray Coating Technique", J. Microscopy Society of Thailand, 24(1), 42 (2010).
  13. T. Luxbacher and A. Mirza, "Spray Coating for MEMS, Interconnects, and Advanced Packaging Applications-MEMS devices with extreme topography in height and size or with square-shaped substrates can be covered with a uniform", Sensors, 16(7), 61 (1999).
  14. N. P. Pham, T. L. M. Scholtes, R. Klerks, E. Boellaard, P. M.Sarro, and J. N. Burghartz, "Direct spray coating of photoresist - a new method for patterning 3-D structures", Eurosensors XVI, 182, Prague, Czech Republic (2002).
  15. K. H. Lee, "Application of Plating Simulation for PCB and Pakaging Process", J. Microelectron. Packag. Soc., 19(3), 1 (2012). https://doi.org/10.6117/kmeps.2012.19.3.001
  16. X. Xu, J. Zhou, and J. Chen, "Thermal Transport in Conductive Polymer-Based Materials", Advanced Functional Materials, 30(8), 1904704 (2019). https://doi.org/10.1002/adfm.201904704
  17. F. Su and M. Miao, "Asymmetric carbon nanotube-$MnO_2$ two-ply yar nsupercapacitors for wearable electronics", Nanotechnology, 25(13), 135401(2014). https://doi.org/10.1088/0957-4484/25/13/135401
  18. B. Zheng, T. Huang, L. Kou, X. Zhao, K. Gopalsamy, and C. Gao, "Graphene fiber-based asymmetric micro-supercapacitors", J. Mater. Chem. A., 2(25), 9736 (2014). https://doi.org/10.1039/C4TA01868K
  19. E. W. Wong, P. E. Sheehan, and C. M. Lieber, "Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes", Science, 277(5334), 1971 (1997). https://doi.org/10.1126/science.277.5334.1971
  20. W. D. Callister and D. G. Rethwisch, "Materials science and Engineering", 5, pp.291, John Wiley & Sons, New York (2011).

피인용 문헌

  1. 칩-섬유 배선을 위한 본딩 기술 vol.27, pp.4, 2020, https://doi.org/10.6117/kmeps.2020.27.4.001
  2. 유연한 투명 전자기 간섭 차폐 필름의 기술개발 동향 vol.28, pp.1, 2020, https://doi.org/10.6117/kmeps.2021.28.1.021
  3. 전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작 vol.28, pp.1, 2020, https://doi.org/10.6117/kmeps.2021.28.1.055
  4. Ni-Pd-CNT Nanoalloys에서 성장한 α-Ga2O3의 특성분석 vol.28, pp.4, 2021, https://doi.org/10.6117/kmeps.2021.28.4.025