DOI QR코드

DOI QR Code

Effect of Kinetic Degrees of Freedom on Hierarchical Organization of Multi-element Synergies during Force Production and Releasing Tasks

  • Kim, Kitae (Department of Physical Education, Seoul National University) ;
  • Song, Junkyung (Department of Physical Education, Seoul National University) ;
  • Park, Jaebum (Department of Physical Education, Seoul National University)
  • Received : 2020.04.13
  • Accepted : 2020.07.01
  • Published : 2020.06.30

Abstract

Objective: The purpose of this study was to examine the effect of degrees of freedom on the multi-synergies in two hierarchies of human hand system during force production and releasing tasks. Method: In this study, the constrained movements of the aiming and releasing actions using both hands and fingers during archery-like shooting were implemented as experimental tasks. The participants produced a pulling force holding the customized frame (mimicking an archery bow, with a set of force transducers) and kept it consistently for about 5 seconds, and released fingers as quickly as possible in a self-paced manner within the next 5 seconds. An analytical method based on the uncontrolled manifold hypothesis was used to quantify the stability index (synergy index) in two hierarchies including two hands (upper hierarchy) and individual fingers (lower hierarchy). Results: The results confirmed that the positive synergy pattern showed simultaneously at the upper and lower hierarchies, and the kinetic degrees of freedom were associated with the increment of hierarchical synergy indices and the performance indices. Also, the synergy indices of both hierarchies showed significant positive correlations with the performance accuracy during the task. Conclusion: The results of this study suggest that the human control system actively uses extra degrees of freedom to stabilize task performance variables. Further increasing the degree of freedom at one level of hierarchy induces positive interactions across hierarchical control levels, which in turn positively affects the accuracy and precision of task performance.

Keywords

References

  1. Baud-Bovy, G. & Soechting, J. F. (2001). Two virtual fingers in the control of the tripod grasp. Journal of Neurophysiology, 86(2), 604-615. https://doi.org/10.1152/jn.2001.86.2.604
  2. Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon Press.
  3. Domkin, D., Laczko, J., Jaric, S., Johansson, H. & Latash, M. L. (2002). Structure of joint variability in bimanual pointing tasks. Experimental Brain Research, 143(1), 11-23. doi: 10.1007/s00221-001-0944-1
  4. Gao, F., Latash, M. L. & Zatsiorsky, V. M. (2005). Internal forces during object manipulation. Experimental Brain Research, 165(1), 69-83. doi:10.1007/s00221-005-2282-1
  5. Gelfand, I. M. & Tsetlin, M. l. (1966). On mathematical modeling of the mechanisms of the central nervous system. Gelfan IM, Gurfinkel Vs, Fomin sV, tsetlin Ml (eds) Models of the structural-functional organization organization of certain biological systems. Nauka, Moscow, 9-26.
  6. Gorniak, S. L., Zatsiorsky, V. M. & Latash, M. L. (2007). Hierarchies of synergies: an example of two-hand, multi-finger tasks. Experimental Brain Research, 179(2), 167-180. doi:10.1007/s00221-006-0777-z
  7. Kang, N., Shinohara, M., Zatsiorsky, V. M. & Latash, M. L. (2004). Learning multi-finger synergies: an uncontrolled manifold analysis. Experimental Brain Research, 157(3), 336-350. doi: 10.1007/s00221-004-1850-0
  8. Kim, D. K. (2017). The effects of the upright body type exercise program on body balance and record of archers. Korean Journal of Sport Biomechanics, 28(1), 9-18. doi:10.5103/KJSB.2017.28.1.9
  9. Kim, K., Xu, D. & Park, J. (2017). Effect of kinetic degrees of freedom of the fingers on the task performance during force production and release: Archery shooting-like action. Korean Journal of Sport Biomechanics, 27(2), 117-124. doi: 10.5103/KJSB.2017.27.2.117
  10. Kim, K., Xu, D. & Park, J. (2018). Effect of kinetic degrees of freedom on multi-finger synergies and task performance during force production and release tasks. Scientific Reports, 8. doi:10.1038/s41598-018-31136-8
  11. Latash, M. L. (2000). There is no motor redundancy in human movements. There is motor abundance. Motor Control, 4(3), 259-261. https://doi.org/10.1123/mcj.4.3.259
  12. Latash, M. L. (2008). Synergy: Oxford University Press.
  13. Latash, M. L., Scholz, J. F., Danion, F. & Schoner, G. (2001). Structure of motor variability in marginally redundant multifinger force production tasks. Experimental Brain Research, 141(2), 153-165. doi:10.1007/s002210100861
  14. Latash, M. L., Scholz, J. P. & Schoner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276-308. doi:10.1123/mcj.11.3.276
  15. Latash, M. L. & Zatsiorsky, V. M. (2009). Multi-finger prehension: control of a redundant mechanical system. Progress in Motor Control: A Multidisciplinary Perspective, 629, 597-618. doi:10.1007/978-0-387-77064-2_32
  16. Li, S., Danion, F., Zatsiorsky, V. M. & Latash, M. L. (2002). Coupling phenomena during asynchronous submaximal two-hand, multi-finger force production tasks in humans. Neuroscience Letters, 331(2), 75-78. doi:Pii S0304-3940(02)00869-8 https://doi.org/10.1016/S0304-3940(02)00869-8
  17. Li, Z. M., Latash, M. L. & Zatsiorsky, V. M. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119(3), 276-286. doi:DOI 10.1007/s002210050343
  18. Olafsdottir, H., Yoshida, N., Zatsiorsky, V. M. & Latash, M. L. (2005). Anticipatory covariation of finger forces during selfpaced and reaction time force production. Neuroscience Letters, 381(1-2), 92-96. doi:10.1016/j.neulet.2005.02.003
  19. Park, J., Baum, B. S., Kim, Y. S., Kim, Y. H. & Shim, J. K. (2012). prehension synergy: use of mechanical advantage during multifinger torque production on mechanically fixed and free objects. Journal of Applied Biomechanics, 28(3), 284-290. doi:DOI 10.1123/jab.28.3.284
  20. Park, J., Jo, H. J., Lewis, M. M., Huang, X. M. & Latash, M. L. (2013). Effects of Parkinson's disease on optimization and structure of variance in multi-finger tasks. Experimental Brain Research, 231(1), 51-63. doi:10.1007/s00221-013-3665-3
  21. Quan, C. H. & Lee, S. M. (2016). Relationship between Aiming Patterns and Scores in Archery Shooting. Korean Journal of Sport Biomechanics, 26(4), 353-360. doi:http://dx.doi.org/10.5103/KJSB.2016.26.4.353
  22. Scholz, J. P., Danion, F., Latash, M. L. & Schoner, G. (2002). Understanding finger coordination through analysis of the structure of force variability. Biological Cybernetics, 86(1), 29-39. doi:10.1007/s004220100279
  23. Scholz, J. P. & Latash, M. L. (1998). A study of a bimanual synergy associated with holding an object. Human Movement Science, 17(6), 753-779. doi:10.1016/S0167-9457(98)00025-6
  24. Scholz, J. P. & Schoner, G. (1999). The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research, 126(3), 289-306. doi:10.1007/s002210050738
  25. Scholz, J. P., Schoner, G. & Latash, M. L. (2000). Identifying the control structure of multi joint coordination during pistol shooting. Experimental Brain Research, 135(3), 382-404. doi: 10.1007/s002210000540
  26. Shim, J. K., Latash, M. L. & Zatsiorsky, V. M. (2005). Prehension synergies: Trial-to-trial variability and principle of superposition during static prehension in three dimensions. Journal of Neurophysiology, 93(6), 3649-3658. doi:10.1152/jn.01262.2004
  27. Zatsiorsky, V. M., Gao, F. & Latash, M. L. (2003). Finger force vectors in multi-finger prehension. Journal of Biomechanics, 36(11), 1745-1749. doi:10.1016/S0021-9290(03)00062-9