DOI QR코드

DOI QR Code

페로브스카이트의 표면 및 계면 결함 제어를 통한 안정성 향상 기술 경향

Recent Progress in Surface/Interface Defect Engineering of Perovskite for Improving Stability

  • 김민 (전북대학교 화학공학부)
  • Kim, Min (School of Chemical Engineering, Jeonbuk National University)
  • 투고 : 2020.06.14
  • 심사 : 2020.06.25
  • 발행 : 2020.06.30

초록

유무기 할로겐화 납 페로브스카이트 태양전지는 25%을 넘는 높은 효율에도 불구하고 낮은 구동 안정성으로 인해 상용화에 불리하며, 이에 페로브스카이트 재료 내구성 향상을 위한 전략이 필요하다. 페로브스카이트 내구성을 높이기 위해서는 페로브스카이트 재료의 결함 특성과 열화 메커니즘 원리에 대해 이해해야 하며, 결함 제어를 통한 소자 안정화 전략을 취해야 한다. 이 총설에서는 페로브스카이트 내 결함 형성 및 소자 구동에 연관된 광물리 특징과 물질 열화 현상을 소개하고, 이를 해결하기 위한 다양한 결함 제어 기술 동향을 정리하였다.

Organic-inorganic metal halide perovskite has shown a great promise in photovoltaic applications because of the skyrocketing power-conversion efficiencies up to 25.2% and their potentially low production cost. However, it also has critical issue of substantial material degradation during device operation to be overcome for successful commercialization. Understanding the nature of defects and their photochemistry related to material degradation is needed. Furthermore, strategy to passivate defects in perovskite should be adopted to improve the stability of perovskite. In this article, we present predominant defects formation in perovskite that contribute to material degradations in perovskite solar cells. We then discuss how material stability can be improved through reliable defect passivation engineering.

키워드

참고문헌

  1. National Renewable Energy Laboratory (NREL), Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html and Champion ModuleEfficiency Chart, https://www.nrel.gov/pv/moduleefficiency.html (accessed: August 2019).
  2. N.-G. Park, H. Segawa, ACS Photonics, 5, 2970 (2018). https://doi.org/10.1021/acsphotonics.8b00124
  3. D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Nat. Rev. Mater., 5, 44 (2020). https://doi.org/10.1038/s41578-019-0151-y
  4. J. Lim, M. T. Horantner, N. Sakai, J. M. Ball, S. Mahesh, N. K. Noel, Y.-H. Lin, J. B. Patel, D. P. McMeekin, M. B. Johnston, B. Wenger, H. J. Snaith, Energy Environ. Sci., 12, 169 (2019). https://doi.org/10.1039/C8EE03395A
  5. M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang, L. Han, Adv. Sci., 4, 1600269 (2017). https://doi.org/10.1002/advs.201600269
  6. L. Meng, J. You, Y. Yang, Nat. Commun., 9, 5265 (2018). https://doi.org/10.1038/s41467-018-07255-1
  7. G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin, Nat. Commun., 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
  8. H.-S. Kim, J.-Y. Seo, N.-G. Park, ChemSusChem, 9, 2528 (2016). https://doi.org/10.1002/cssc.201600915
  9. B. Kim, S. I. Seok, Energy Environ. Sci., 13, 805 (2020). https://doi.org/10.1039/C9EE03473K
  10. F. Zhang, K. Zhu, Adv. Energy Mater., 10, 1902579 (2020). https://doi.org/10.1002/aenm.201902579
  11. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, K. Zhu, Chem. Mater., 28, 284 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
  12. Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X. Y. Zhu, S. Jin, Nat. Rev. Mater., 4, 169 (2019). https://doi.org/10.1038/s41578-019-0080-9
  13. F. Gao, Y. Zhao, X. Zhang, J. You, Adv. Energy Mater., 10, 1902650 (2020). https://doi.org/10.1002/aenm.201902650
  14. B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev., 48, 3842 (2019). https://doi.org/10.1039/C8CS00853A
  15. J. M. Ball, A. Petrozza, Nat. Energy, 1, 16149 (2016). https://doi.org/10.1038/nenergy.2016.149
  16. W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett., 104, 063903 (2014). https://doi.org/10.1063/1.4864778
  17. J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, E. H. Sargent, Nat. Commun., 6, 7081 (2015). https://doi.org/10.1038/ncomms8081
  18. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, J. Mater. Chem. A, 3, 8926 (2015). https://doi.org/10.1039/C4TA05033A
  19. D. Meggiolaro, S. G. Motti, E. Mosconi, A. J. Barker, J. Ball, C. Andrea Riccardo Perini, F. Deschler, A. Petrozza, F. De Angelis, Energy Environ. Sci., 11, 702 (2018). https://doi.org/10.1039/C8EE00124C
  20. T. Leijtens, G. E. Eperon, A. J. Barker, G. Grancini, W. Zhang, J. M. Ball, A. R. S. Kandada, H. J. Snaith, A. Petrozza, Energy Environ. Sci., 9, 3472 (2016). https://doi.org/10.1039/C6EE01729K
  21. Y. Yuan, J. Huang, Acc. Chem. Res., 49, 286 (2016). https://doi.org/10.1021/acs.accounts.5b00420
  22. W. Nie, J.-C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, A. D. Mohite, Nat. Commun., 7, 11574 (2016). https://doi.org/10.1038/ncomms11574
  23. A. J. Knight, L. M. Herz, Energy Environ. Sci., DOI: 10.1039/D0EE00788A (2020).
  24. D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant, S. A. Haque, Energy Environ. Sci., 9, 1655 (2016). https://doi.org/10.1039/C6EE00409A
  25. N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, S. A. Haque, Nat. Commun., 8, 15218 (2017). https://doi.org/10.1038/ncomms15218
  26. G. Y. Kim, A. Senocrate, T.-Y. Yang, G. Gregori, M. Gratzel, J. Maier, Nat. Mater., 17, 445 (2018). https://doi.org/10.1038/s41563-018-0038-0
  27. S. R. Raga, L. K. Ono, Y. Qi, J. Mater. Chem. A, 4, 2494 (2016). https://doi.org/10.1039/C5TA10055K
  28. E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono, Y. Qi, Energy Environ. Sci., 9, 3406 (2016). https://doi.org/10.1039/C6EE02016J
  29. A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, P. R. F. Barnes, Chem. Mater., 27, 3397 (2015). https://doi.org/10.1021/acs.chemmater.5b00660
  30. Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, J. Huang, Energy Environ. Sci., 10, 516 (2017). https://doi.org/10.1039/C6EE02941H
  31. J.-W. Lee, Z. Dai, C. Lee, H. M. Lee, T.-H. Han, N. De Marco, O. Lin, C. S. Choi, B. Dunn, J. Koh, D. Di Carlo, J. H. Ko, H. D. Maynard, Y. Yang, J. Am. Chem. Soc., 140, 6317 (2018). https://doi.org/10.1021/jacs.8b01037
  32. J.-W. Lee, S.-H. Bae, Y.-T. Hsieh, N. De Marco, M. Wang, P. Sun, Y. Yang, Chem, 3, 290 (2017). https://doi.org/10.1016/j.chempr.2017.05.020
  33. D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin, D. Lee, N.-G. Park, J. Am. Chem. Soc., 140, 1358 (2018). https://doi.org/10.1021/jacs.7b10430
  34. N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, ACS Nano, 8, 9815 (2014). https://doi.org/10.1021/nn5036476
  35. A. Merdasa, A. Kiligaridis, C. Rehermann, M. Abdi-Jalebi, J. Stober, B. Louis, M. Gerhard, S. D. Stranks, E. L. Unger, I. G. Scheblykin, ACS Energy Lett., 4, 1370 (2019). https://doi.org/10.1021/acsenergylett.9b00774
  36. C. Bi, X. Zheng, B. Chen, H. Wei, J. Huang, ACS Energy Lett., 2, 1400 (2017). https://doi.org/10.1021/acsenergylett.7b00356
  37. L. Kuai, Y. Wang, Z. Zhang, Y. Yang, Y. Qin, T. Wu, Y. Li, Y. Li, T. Song, X. Gao, L. Wang, B. Sun, Solar RRL, 3, 1900053 (2019). https://doi.org/10.1002/solr.201900053
  38. C.-H. Chiang, C.-G. Wu, Nat. Photonics, 10, 196 (2016). https://doi.org/10.1038/nphoton.2016.3
  39. F. Wang, A. Shimazaki, F. Yang, K. Kanahashi, K. Matsuki, Y. Miyauchi, T. Takenobu, A. Wakamiya, Y. Murata, K. Matsuda, J. Phys. Chem. C, 121, 1562 (2017). https://doi.org/10.1021/acs.jpcc.6b12137
  40. M. Kim, S. G. Motti, R. Sorrentino, A. Petrozza, Energy Environ. Sci., 11, 2609 (2018). https://doi.org/10.1039/C8EE01101J
  41. P. Zhou, Z. Fang, W. Zhou, Q. Qiao, M. Wang, T. Chen, S. Yang, ACS Appl. Mater. Inter., 9, 32957 (2017). https://doi.org/10.1021/acsami.7b12135
  42. X. Liu, J. Wu, Y. Yang, T. Wu, Q. Guo, J. Power Sources, 399, 144 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.093
  43. M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Joule, 3, 2179 (2019). https://doi.org/10.1016/j.joule.2019.06.014
  44. K. Odysseas Kosmatos, L. Theofylaktos, E. Giannakaki, D. Deligiannis, M. Konstantakou, T. Stergiopoulos, Energy Environ. Mater., 2, 79 (2019). https://doi.org/10.1002/eem2.12040
  45. Y. Rong, X. Hou, Y. Hu, A. Mei, L. Liu, P. Wang, H. Han, Nat. Commun., 8, 14555 (2017). https://doi.org/10.1038/ncomms14555
  46. J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, J. Liu, F. Zhang, S. P. Harvey, Z. Li, S. T. Christensen, G. Teeter, D. Zhao, M. M. Al-Jassim, M. F. A. M. van Hest, M. C. Beard, S. E. Shaheen, J. J. Berry, Y. Yan, K. Zhu, Science, 364, 475 (2019). https://doi.org/10.1126/science.aav7911
  47. H. Zhang, M. Hou, Y. Xia, Q. Wei, Z. Wang, Y. Cheng, Y. Chen, W. Huang, J. Mater. Chem. A, 6, 9264 (2018). https://doi.org/10.1039/C8TA00308D
  48. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, Xiao C. Zeng, J. Huang, Nature Energy, 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
  49. D. H. Kim, C. P. Muzzillo, J. Tong, A. F. Palmstrom, B. W. Larson, C. Choi, S. P. Harvey, S. Glynn, J. B. Whitaker, F. Zhang, Z. Li, H. Lu, M. F. A. M. van Hest, J. J. Berry, L. M. Mansfield, Y. Huang, Y. Yan, K. Zhu, Joule, 3, 1734 (2019). https://doi.org/10.1016/j.joule.2019.04.012
  50. M. Kim, J. M. Figueroa-Tapia, M. Prato, A. Petrozza, Adv. Energy Mater., 10, 1903221 (2020). https://doi.org/10.1002/aenm.201903221
  51. C. Lan, Z. Zhou, R. Wei, J. C. Ho, Mater. Today Energy, 11, 61 (2019). https://doi.org/10.1016/j.mtener.2018.10.008
  52. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Gratzel, Y. Zhao, Sci. Adv., 3, e1700841 (2017). https://doi.org/10.1126/sciadv.1700841
  53. J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Y. Yang, Nat. Commun., 9, 3021 (2018). https://doi.org/10.1038/s41467-018-05454-4
  54. Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, H. J. Snaith, Nat. Energy, 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135