DOI QR코드

DOI QR Code

UV경화형 폴리우레탄 아크릴레이트와 실리카 나노입자를 이용한 초발수 및 초발유 스프레이 코팅

Superhydrophobic/Superoleophobic Spray Coatings based on Photocurable Polyurethane Acrylate and Silica Nanoparticles

  • 투고 : 2020.06.13
  • 심사 : 2020.06.20
  • 발행 : 2020.06.30

초록

본 연구에서는 UV 경화형 폴리우레탄 아크릴레이트와 실리카 나노입자를 용매에 분산하여 간편한 스프레이 코팅을 통해 초발수 및 초발유 표면을 제작하였다. 용매의 종류, 고분자의 농도, 분사량 조절에 따른 코팅 표면 구조의 변화를 확인하였으며, 물과 오일의 접촉각 측정을 통해 초발수 및 초발유 특성을 정량화 하였다. 스프레이 코팅 표면의 re-entrant 구조를 분석하여 초발수 및 초발유 특성이 극대화된 스프레이 코팅의 메커니즘을 제시하였다. 최적화된 스프레이 코팅 조건을 적용하여 제조된 표면의 물과 오일의 접촉각 hysteresis는 각각 2°, 30° 이하이며 오일 방울이 표면에서 튈 정도로 우수한 초발수 및 초발유 특성을 보였다.

This paper describes a simple approach for preparing a superhydrophobic and superoleophobic coating via spraying the mixture of UV-curable polyurethane acrylate and silica nanoparticles dispersed in a solvent. The prepared surface structures can be controlled by changing the types of solvents, the concentration of the polymer, and the amount of spraying. Superhydrophobicity and superoleophobicity are quantified by measuring the contact angle of water and oil, respectively. We also demonstrate the mechanism of spray coating with maximized superhydrophobicity and superoleophobicity through the analysis of re-entrant surface structures. At the appropriate amount and the composition of mixed solutions, the contact angle hysteresis of water and oil on the prepared surface is less than 2° and 30°, respectively. In addition, it shows excellent water-repellent and oil-repellent properties such that the oil droplet bounces off the surface.

키워드

참고문헌

  1. Y. Zheng, D. Han, J. Zhai, and L. Jiang, Appl. Phys. Lett, 92, (2008).
  2. E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, and E. Bormashenko, J. Colloid Interface Sci, 311, 212 (2007). https://doi.org/10.1016/j.jcis.2007.02.049
  3. R. P. Evershed, R. Berstan, F.Grew, M. S. Copley, A. J. H. Charmant, E. Barham, H. R.Mottram, and G. Brown, Nature, 432, 36 (2004). https://doi.org/10.1038/432036a
  4. W. Lee, M. K. Jin, W. C. Yoo, and J. K. Lee, Langmuir, 20, 7665 (2004). https://doi.org/10.1021/la049411+
  5. X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, Adv. Mater, 19, 2213 (2007). https://doi.org/10.1002/adma.200601946
  6. M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, Adv. Mater, 21, 665 (2009). https://doi.org/10.1002/adma.200801782
  7. S. Wangand L. Jiang, Adv. Mater, 19, 3423 (2007). https://doi.org/10.1002/adma.200700934
  8. A. Tuteja, W. Choi, G. H. McKinley, R. E. Cohen, and M. F. Rubner, MRS Bull, 33, 752 (2011). https://doi.org/10.1557/mrs2008.161
  9. L. Mishchenko, B. Hatton, V. Bahadur, J. A. Taylor, T. Krupenkin, and J. Aizenberg, ACS Nano, 4, 7699 (2010). https://doi.org/10.1021/nn102557p
  10. J. Yang, Z. Zhang, X. Xu, X. Zhu, X. Men, and X. Zhou, J. Mater. Chem, 22, (2012).
  11. Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, and L. Jiang, Adv. Mater, 23, 4270 (2011). https://doi.org/10.1002/adma.201102616
  12. Y. C. Jungand B. Bhushan, Langmuir, 25, 14165 (2009). https://doi.org/10.1021/la901906h
  13. Y. Zhu, J. Zhang, Y. Zheng, Z. Huang, L. Feng, and L. Jiang, Adv. Funct. Mater, 16, 568 (2006). https://doi.org/10.1002/adfm.200500624
  14. A. K. Epstein, B. Pokroy, A. Seminara, and J. Aizenberg, Proc. Natl. Acad. Sci. U.S.A, 108, 995 (2011). https://doi.org/10.1073/pnas.1011033108
  15. A. Tuteja, W. Choi, J. M. Mabryc, G. H. McKinley, and R. E. Cohena, Proc. Natl. Acad. Sci. U.S.A, 105, 18200 (2008). https://doi.org/10.1073/pnas.0804872105
  16. M. Im, H. Im, J.-H. Lee, J.-B. Yoon, and Y.-K. Choi, Soft Matter, 6, (2010).
  17. S. Oyola-Reynoso, Z. Wang, J. Chen, S. Cinar, B. Chang, and M. Thuo, Coatings, 5, 1002 (2015). https://doi.org/10.3390/coatings5041002
  18. A. K. Kota, G. Kwon, and A. Tuteja, NPG Asia Mater, 6, e109 (2014). https://doi.org/10.1038/am.2014.34
  19. A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, Langmuir, 24, 9 (2007). https://doi.org/10.1021/la702327z
  20. W. Jiang, C. M. Grozea, Z. Shi, and G. Liu, ACS Appl. Mater. Interfaces, 6, 2629 (2014). https://doi.org/10.1021/am4051074
  21. V. A. Ganesh, S. S. Dinachali, A. S. Nair, and S. Ramakrishna, ACS Appl. Mater. Interfaces, 5, 1527 (2013). https://doi.org/10.1021/am302790d
  22. X. Liu, W. Wu, X. Wang, Z. Luo, Y. Liang, and F. Zhou, Soft Matter, 5, (2009).
  23. S. G. Lee, D. S. Ham, D. Y. Lee, H. Bong, and K. Cho, Langmuir, 29, 15051 (2013). https://doi.org/10.1021/la404005b
  24. H. Han, J. S. Lee, H. Kim, S. Shin, J. Lee, J. Kim, X. Hou, S. W. Cho, J. Seo, and T. Lee, ACS Nano, 12, 932 (2018). https://doi.org/10.1021/acsnano.7b05826
  25. C.-T. Hsieh, J.-M. Chen, R.-R. Kuo, T.-S. Lin, and C.-F. Wu, Appl. Surf. Sci, 240, 318 (2005). https://doi.org/10.1016/j.apsusc.2004.07.016
  26. D. G. Lee, N. H. Kim, H. W. Kim, and J. Y. Kim, J. Adhes. Interf, 20, 146 (2019).
  27. T. Y. Kim, J. Jeong, and I. Chung, J. Adhes. Interf, 16, 116 (2015). https://doi.org/10.17702/jai.2015.16.3.116
  28. A. Lafumaand D. Quere, Nat. Mater, 2, 457 (2003). https://doi.org/10.1038/nmat924
  29. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, Science, 318, 1618 (2007). https://doi.org/10.1126/science.1148326
  30. D. Quere, Annu. Rev. Mater. Sci, 38, 71 (2008). https://doi.org/10.1146/annurev.matsci.38.060407.132434
  31. A. Steele, I. Bayer, and E. Loth, Nano Lett, 9, 501 (2009). https://doi.org/10.1021/nl8037272