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ABSTRACT  
We present an approximate DRAM architecture for energy-efficient deep learning. Our key 
premise is that by bounding memory errors to non-critical information, we can significantly reduce 
DRAM refresh energy without compromising recognition accuracy of deep neural networks. To 
validate the key premise, we make extensive Monte-Carlo simulations for several well-known 
convolutional neural networks such as LeNet, ConvNet and AlexNet with the input of MINIST, 
CIFAR-10, and ImageNet, respectively. We assume that the highest-order 8-bits (in single 
precision) and 4-bits (in half precision) are protected from retention errors under the proposed 
architecture and then, randomly inject bit-errors to unprotected bits with various bit-error-rates. 
Here, recognition accuracies of the above convolutional neural networks are successfully 
maintained up to the 10-5-order bit-error-rate. We simulate DRAM energy during inference of the 
above convolutional neural networks, where the proposed architecture shows the possibility of 
considerable energy saving up to 10 ~ 37.5% of total DRAM energy. 
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1. INTRODUCTION 
Deep neural network (DNN) succeeds in making a 
quantum leap in some areas such as image or speech 
recognition accuracy. Recently, even in the areas such 
as medicine and musical composition, where people 
have conventional belief that machine cannot deliver 
human-competitiveness, machine learning based on 
DNN, so called deep learning, demonstrates 
successful performance [1]. These successes make 
people consider that deep learning may lead to 
paradigm shift in human life, making strong 
momentum for the development of DNN to provide 
better recognition accuracy. Hence, researchers have 
continued to develop a new convolutional neural 
network (CNN), an effective DNN structure for image 
recognition, such as AlexNet, VGGNet, GoogleNet  
and ResNet [2]-[5]. Many researchers have shown that 
the above CNN algorithms achieve recognition 
accuracy as good as human [4].  

It should be noted that for the inference and the 
training of these CNN algorithms, myriads of weight 
and activation parameters need to be referred or 

generated [6]. Hence, large capacity of main 
memories, implemented as DRAM, is required to 
efficiently operate deep learning systems based on 
these CNN algorithms. Under such circumstance, it is 
highly probable that the energy dissipation of DRAM 
becomes significant. Hence, researchers have 
explored many techniques to reduce the energy 
dissipation of DRAM in deep learning systems. For 
instance, the authors of [6] propose a novel framework 
for the compression of deep neural networks, which 
dramatically reduces the number of deep learning 
parameters. The research groups of [18] also develop 
ASICs dedicated for deep learning, where they invent 
techniques to reuse data stored in on-chip memories. 
The aim of these data-reusing techniques is to mitigate 
main memory footprints. 

The above researches make significant technical 
progress in deep learning since they simultaneously 
improve system energy and throughput by reducing 
the number of DRAM accessing. However, these 
works have a limitation to be applied only for the 
inference of deep learning. Moreover, previous 
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literature [8] has shown that in DRAM, refresh energy 
occupies considerable portion of total energy 
dissipation. The authors of [8] show that as the density 
of DRAM increases, refresh energy becomes more 
critical. These make strong motivation to improve 
DRAM refresh energy in both inference and training 
of deep learning.  

In this work, we present an approximate DRAM 
architecture to reduce DRAM refresh energy in deep 
learning systems. In our approximate DRAM 
architecture, we allow retention errors to mitigate the 
constraint of auto-refresh time, 64ms in JEDEC 
specifications [19], or self-refresh time. However, we 
make these retention errors are bounded to non-critical 
information, which is least significant bits of weight 
and activation parameters and regulate bit-error-rate 
(BER) due to expanded refresh time below a certain 
level. In our approximate DRAM architecture, the 
range of critical and non-critical information and the 
regulated BER of non-critical information are 
reconfigurable and hence, can be varied by users 
depending on their target applications. These schemes 
can be implemented with very minor hardware 
modification of DRAM control parts. Consequently, 
corresponding overhead with respect to throughput 
and latency is negligible. 

The remaining parts of this paper are organized as 
follows. In section 2, we briefly review several 
representative works regarding DRAM refresh energy 
reduction and analyze their challenge. In section 3, we 
discuss the major contribution of this paper and the 
detailed architecture of the proposed DRAM. In 
section 4, we make some analysis to support the 
possibility of our proposed DRAM architecture. In 
section 5, we show our simulation results, validating 
the proposed architecture. In section 6, our energy 
estimation results are discussed. Lastly, section 7 
concludes this paper. 

2. RELATE WORKS AND THEIR 
CHALLENGE  

As the density of DRAM becomes higher, refresh 
energy of DRAM is predicted to become more 
significant [8], as mentioned in section 1. Hence, 
many researchers have made much effort to alleviate 
such a challenge. For instance, in RAIDR [8], 
retention times of all DRAM rows are fully profiled 
and then, a corresponding memory controller 
categorizes these DRAM rows to several bins with 
respect to retention time. After referring to the 

categorized bins, the memory controller adaptively 
issues auto-refresh command with the optimal refresh 
period of each row. This approach leads to almost 75% 
refresh energy improvement. 

The authors of [14] note that the row-level refresh 
control of RAIDR may accompany considerable 
performance overhead due to large number of 
ACT/PRE commands. They efficiently address this 
challenge by using a dummy-refresh technique, 
referred as REFLEX. The REFLEX technique uses 
the same mechanism as normal auto-refresh 
operations and hence, does not degrade performance. 
Both RAIDR and REFLEX can be applied under the 
assumption that retention times of all memory rows 
can be fully profiled. However, all chips should be 
individually characterized with respect to retention 
time for RAIDR and REFLEX, impractical due to 
large verification overhead.  

The authors of [16] develop a technique named as 
Flikker, which exploits significance-driven 
approximate computing to improve DRAM refresh 
energy efficiency. They categorize pages to critical and 
non-critical ones. Memory rows to store critical pages 
are refreshed with the normal period while non-critical 
pages are placed to rows with low-rate refreshes, 
potentially exposed to retention errors. This provides 
good energy-quality scalability since only non-critical 
pages experience retention errors. To further improve 
energy-quality scalability, the authors of [17] 
characterize retention times of whole physical pages. 
Then, they sequentially sort physical pages according 
to the characterized retention times. Logical pages are 
also sorted by their significance and then, sequentially 
mapped to the sorted physical pages. Depending on 
their applications, critical and non-critical pages are 
varied. System administrators adaptively control 
refresh time not to affect data integrity of critical pages. 
These techniques commonly assume that pages can be 
categorized according to the importance of data. 
However, in most cases it is difficult to relatively 
evaluate the importance of data, making the page 
categorization challenging. In addition, deep learning 
systems have a hazard that the classification accuracy is 
significantly degraded even under extremely low BER 
situation of DRAM.  

Figure 1 shows our simulation results. Even small 
BER of 10-7~ 10-6, which possibly occur at high 
temperature with the slight increment of refresh time 
[15], results in significant accuracy degradation for both 
the first and second scenarios. The simulation results of 
Figure 1 imply that when the techniques of [16], [17] 
are applied for AlexNet, we may suffer from 
considerable classification accuracy degradation. 
Furthermore, the approach of [17] is valid under the 
assumption that retention times of physical pages can 
be fully profiled. However, this is challenging due to 
the large verification effort, as mentioned above. 

Figure 1. Inference Accuracy with respect to data errors  
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3. OUR CONTRIBUTION  
Main memories of sever machines are implemented in 
a dual in-line memory module (DIMM). In the DIMM, 
the function of error checking and correction (ECC) can 
be optionally added. In this work, we explain our 
approach with un-buffered non-ECC DRAM. However, 
our proposed concepts can be easily extended to 
DRAMs with ECC. 

The concept of our approximate DRAM 
architecture can be summarized to Figure 2. Here, tRFW 
expresses a refresh time of DRAM. According to 
JEDEC specification [19], the normal value of tRFW is 
64ms below 85°C for auto-refresh operation. Mostly, 
a DIMM has two ranks, which respectively consist of 
eight DRAM chips under the scenario of non-ECC. In 
this work, we assume the typical case that each 
DRAM chip has 8-bit data lines, which can be 
changed dependently on DRAM specifications. In the 
proposed architecture, we categorize eight DRAM 
chips of a DRAM rank to normal and energy-saving 
ones. Memory rows of the energy-saving chip are 
classified to two zones, which are critical and non-
critical ones, while the normal chip has the same 
refresh behavior as conventional DRAM chips, where 
total rows are auto-refreshed with the tRFW of 64ms 
below 85°C. In the energy-saving chip, tRFW of the 
critical zone is same as that of the normal chip, 
whereas that of the non-critical zone is significantly 
larger than the normal refresh time.  

Unlike Flikker [16], all deep learning parameters 
are stored to the non-critical zone without page 
categorization according to their significance and 
hence, all parameters are exposed to retention errors. 
The critical zone is necessary only to store program 
codes or control information, or to support other 
system programs under multi-tasking environment. 
We ensure that for the energy-saving chip, BER of its 
non-critical zone can be regulated below a level 
desired by system administrators. We assume that the 

system administrators decide a suitable BER level not 
to affect classification accuracy of their deep learning 
system, which can be obtained from system-level 
analysis, and then, send a BER regulation command 
to DRAM chips. Then, the DRAM chips adjust tRFW 
of their non-critical zone to satisfy this. 

 

A. OUR ARCHITECTURE  
Let us further explain the architecture of Figure 2. 

We assume that critical MSBs of deep learning 
parameters are stored in Chip #1 or Chip #5, and other 
remaining bits are mapped to the other remaining 
chips. Throughout this work, we consider two most 
representative data formats in hybrid CPU-GPU 
platforms, single-precision and half-precision floating 
points. Our simulations show that up to the BER of 
10-5, 8-bit MSB (for single-precision) and 4-bit MSB 
protections (for half-precision), which is obtained by 
storing these bits to normal chips, deliver the same 
classification accuracies for various CNN algorithms 
as their corresponding data integrity cases, whose 
detail discussion is shown in section 4. The above two 
protection cases can be simply achieved under the 
architecture of Figure 2 discussed in section 3.B. 

The optimal range of protected critical bits can be 
dependent on the currently used CNN algorithm or 
data format. Then, system administrators may want to 
change this setting to optimize their systems. 
Considering this, we make that it is reconfigurable 
whether a DRAM chip is normal or energy-saving, 
which enables us to change the range of protected bits 
in a DRAM rank. The number of rows placed in the 
critical zone of energy-saving chips, which is 
described as NUMCrit in Figure 1 is also 
reconfigurable. In DDR4 DRAMs, the base 
granularity of refresh operation is eight rows [19] and 
hence, NUMCrit should be controlled with the same 
granularity, which can be easily implemented in 

 
Figure 2. Our approximate DRAM architecture  
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DRAM control part. In Figure 2, the number of banks 
is expressed to be eight, which is borrowed from the 
specification of DDR3. However, this work can be 
easily applied to DDR4, where the number of bank can 
be further larger. 

B.  DATA MAPPING RULE  
Firstly, we consider two representative data format 
cases, single- and half-precision floating points, as 
mentioned above. Under these data formats, our studies 
show that 8-bit and 4-bit MSB protections are sufficient, 
respectively. This conclusion is derived from our 
hypothetical experiments where we inject bit-errors to 
a special bit-position with a certain BER. The results 
gathered by various and numerous experiments show 
that classification accuracies are sensitive to only 8-bit 
MSBs (for single-precision) and 4-bit MSB (for half-
precision).  

For the single-precision, the 8-bit MSB protection 
is simply supported under the architecture of Figure 2, 
as shown in Figure 3(a). However, to protect 4-bit 
MSB in the half-precision scenario, the number of 
normal chips, expressed in black color, needs to be 
incremented as shown in the case 1 of Figure 3(b) 
When we assume that due to large tRFW, the refresh 
energy of energy-saving chips are much smaller than 
that of normal chips, the scheme of Figure 3(a) leads 
to 75% refresh energy saving while that of the case 1 
in Figure 3(b) obtains only 50% reduction. To further 
improve the energy efficiency of the half-precision 
scenario, we present a data mapping such as the case 
2 of Figure 3(b) in DIMM, which can be simply 
implemented with the support of memory controllers. 
This mapping enables the 4-bit MSB protection of the 

half-precision scenario with only two normal chips, 
expressed in black color, as shown in Figure 3(b). 

4. VALIDATION  
As discussed in section 3, in our architecture data 
integrity is guaranteed for only several critical MSBs. 
Under the 8-MSB (for single-precision) and the 4-MSB 
(for half-precion) protection, our hypothetical 
experiments show that deep learning systems provide 
sufficiently good classification accuracies even in the 
existence of run-time retention errors of LSBs, which is 
the key premise of the proposed architecture. We 
validate the key premise by running simulation in 
inference and training of several CNNs.  

A. INFERENCE  
In the similar way to Figure 1, we run simulations. 
Under the architecture of Figure 2, the data integrity of 
8-MSB (for single-precision) and 4-MSB (for half-
precision) is guaranteed. Hence, we generate bit-errors 
only for the other LSB bits. Let us call the 8-MSB 
protection of single-precision as the first scenario and 
the other one as the second one in this section. We 
perform the simulation for a hybrid CPU-GPU platform. 
We observe classification accuracies of four CNNs, 
which are ConvNet (for CIFAR-10 [10, 12]), AlexNet 
(for ImageNet [13]), and GoogleNet (for ImageNet). 
Our simulation results are shown in Figure 4. At the 
first scenario, our proposed architecture delivers the 
same classification accuracy as the case with data 
integrity, with up to 10-4-order BER for all data-sets of 
CIFAR-10, and ImageNet. At the second scenario, 
small accuracy drops of ImageNet (less than 3%) are 
observed from the BER of 10-4-order. Up to 10-5-order 
BER, classification accuracies are same as the data 

 
(a) 

 
(b) 

Figure 3. Data Mapping Rules of the Proposed Architecture (a) 
Mapping of Single-Precision Floating Point Format Data (b) Two 
Possible Mapping Cases of Half-Precision Floating Point Format 
Data  

 
Figure 4. Inference simulation results for various BER scenarios  
 

 
Figure 5. Training simulation results for various BER scenarios    
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integrity case for all data-sets. The classification 
accuracies of CIFAR-10 are conserved up to the BERs 
of 10-4-order. 

Under the 4-MSB protection of half-precision 
floating point data, we can assure the data integrity of 
only sign bit and three higher-order exponent bits, and 
hence, two remaining exponent bits are still exposed 
to retention errors. On the other hand, at the first 
scenario, only single exponent bit experiences 
retention errors. This makes that the scheme of the 
second scenario is more sensitive to retention errors 
compared to that of the first one. In the case that the 
retention errors can occur in any of all bits without the 
protection of MSBs, classification accuracies are 
significantly degraded even at the BER of 10-7-order, 
shown in Figure 1. This clearly validates the 
efficiency of our proposed protection schemes in 
inference operations of deep learning systems. 

B. TRAINING  
We also make simulations for training, whose results 
are shown in Figure 5. Here, we generate bit-flipping 
for unprotected bits, where the bit-flipped positions are 
randomly chosen. By using the similar method to the 
above inference simulations, we mitigate the problem 
that training performance is affected by the positions of 
bit-flipping. For the training, we only consider the 
single-precision floating-point data format. 

Our simulation results show that the proposed 
scheme is so effective to training as well. Without the 
MSB protection, considerable training performance 
drop is observed for both MNIST [12] and CIFAR-10 
at the small BER of 10-7-order. However, the proposed 
8-MSB protection makes the training performance to 
be conserved up to the BER of 10-5-order. At the BER 
of 10-4-order, only small classification accuracy drop 
of 2.3% is observed in CIFAR-10.  

5. ENERGY SIMULATION  
In this section, we simulate DRAM energy dissipation 
of deep learning systems by employing Gem5 [20] and 
DRAMPower [21] simulators. According to [15], both 
auto- and self-refresh energies are proportional to the 
number of refreshed rows. Hence, under the assumption 
that besides refresh energies, other energy components 
are same, we can suitably derive energy dissipation of 
our architecture. Due to computational overhead, we 
estimate the energy under CPU platforms instead of 
hybrid CPU-GPU platforms.  

Figure 6 shows our simulation configurations. We 
imitate a general CPU platform, which have two CPU 
cores with their own instruction and data caches to 
operate at 4GHz clock. These CPU cores are 
connected to memory controllers through 1GHz 
crossbar switch bus. The number of memory 
controllers is varied, where three scenarios of 1, 2, and 
4 (the number of memory controllers) are considered. 
We assume that for all cases, the number of ranks is 

fixed to two since most DDR3 and DDR4 DRAMs 
have two ranks. The numbers of memory controllers 
(=N) and rank (=M) are expressed as NCMR in Figure 
6 and Figure 7. We employ three kinds of DRAM in 
the simulation, which are DDR3_2133_8X8 (2133 
MHz, 8 chips X 8 DQ lines per chip in a rank = 64 DQ 
lines), DDR4_2400_8X8 (2400 MHz, 8 chips X 8 DQ 
lines per chip in a rank = 64 DQ lines) and 
DDR4_2400_16X4 (2400 MHz, 16 chips X DQ lines 
per chip in a rank = 64 DQ lines). We utilize the 
framework of Tiny-DNN [22]. This provides light-
weight C++ DNN codes and hence, is suitable for the 
power simulation.  

Figure 7 show the energy simulation and estimation 
results for single image input of AlexNet (with 
ImageNet). Due to extremely large computational 
overhead of training, we can simulate DRAM energy 
for only inference operation. Here, we define a 
parameter RCrit, which is the value of 
‘NUMCrit/NUMrow’ in Figure 2. When RCrit is one, 
which implies that all memory rows of energy-saving 
chips are included in critical region, the energy 
dissipation of the proposed DRAM architecture is the 
same as that of the conventional ones. As RCrit is 
reduced, the number of rows placed in non-critical 
region becomes larger. For various cases of RCrit, we 
suitably estimate energy dissipation by using the 
method mentioned above. 

In our DRAM simulation, total refresh energy, the 
summation of auto- and self-refresh energies, 
occupies a substantial portion of total DRAM energy, 
roughly 14.7 ~ 50% for AlexNet. The DDR4 DRAMs 
used in our simulation have sixteen memory banks 
while in DDR3 DRAM, the number of memory banks 
is eight, making that refresh energy becomes more 
critical in DDR4 DRAM compared to DDR3 DRAM. 
Such trend clearly appears in our simulation results, 
which also show that with the increment of memory 
channel number, refresh energy tends to become 
larger. This is highly correlated to the fact that as the 
number of memory channel increases, the number of 
refreshed rows increases. It should be noted that our 

Figure 6. Our simulation setup  
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approximate DRAM architecture significantly 
reduces the refresh energy, up to 75% when RCrit is 
zero. Such refresh energy saving corresponds to 11~ 
37.5% of the total DRAM energy for AlexNet. 

6. CONCLUSION 
We present an approximate DRAM architecture to 
reduce refresh energy of main memories. In the 
proposed architecture, critical MSBs are stored to 
normal chips, which are normally refreshed, while 
energy-saving chips, where other reminding bits 
regarded relatively non-critical are stored, have 
expanded refresh times. Here, only non-critical bits are 
exposed to retention errors. By suitably regulating bit-
error-rate of energy-saving chips, we can significantly 
improve DRAM energy without compromising 
classification accuracy of deep learning inference. This 
concept is validated through extensive simulations. 
Also, we show that the proposed architecture can be 
applicable to training of deep learning.  
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