DOI QR코드

DOI QR Code

Recent Advance of Flexible Organic Memory Device

  • Kim, Jaeyong (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Hung, Tran Quang (Institute of Chemistry Vietnam Academy of Science and Technology) ;
  • Kim, Choongik (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Received : 2020.05.18
  • Accepted : 2020.06.09
  • Published : 2020.06.30

Abstract

With the recent emergence of foldable electronic devices, interest in flexible organic memory is significantly growing. There are three types of flexible organic memory that have been researched so far: floating-gate (FG) memory, ferroelectric field-effect-transistor (FeFET) memory, and resistive memory. Herein, performance parameters and operation mechanisms of each type of memory device are introduced, along with a brief summarization of recent research progress in flexible organic memory.

Keywords

References

  1. R. Bez, A. Pirovano. (2004, Sep.). Non-volatile memory technologies: emerging concepts and new materials. Mater. Sci. Semi. Processing. [Online]. 7(4-6), pp. 349-355. Available: https://www.sciencedirect.com/science/article/abs/pii/S1369800104001003?via%3Dihub https://doi.org/10.1016/j.mssp.2004.09.127
  2. R. Bez, E. Camerlenghi, A. Modelli, A. Visconti. (2003, May). Introduction to flash memory. Proceedings of the IEEE. [Online]. 91(4), pp. 489-502. Available: https://ieeexplore.ieee.org/document/1199079 https://doi.org/10.1109/JPROC.2003.811702
  3. G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria. (2011, July). Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. [Online]. 110(12), pp. 124518. Available: https://aip.scitation.org/doi/10.1063/1.3671565
  4. Y. J. Cho, W. S. Kim, Y. H. Lee, J. K. Park, G. T. Kim, O. H. Kim. (2018, June). Effect of defect creation and migration on hump characteristics of a-InGaZnO thin film transistors under long-term drain bias stress with light illumination. Solid State Electronics. [Online]. 144, pp. 95-100. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038110117306846?via%3Dihub https://doi.org/10.1016/j.sse.2018.03.009
  5. B. K. Park, D. I. Ho, G. H. Kwon, D. J. Kim, S. Y. Seo, C. I. Kim, M. K. Kim. (2018, Oct.). Solution-Processed Rad-Hard amorphous Metal-Oxide Thin-Film Transistors. Adv. Funct. Mater. [Online]. 28(47), pp. 1802717. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201802717
  6. J. H. Ahn, H. Lee, S. H. Choa. (2013, June). Technology of Flexible Semiconductor/Memory Device. J. of the Micro. & Pack. Society. [Online]. 20, pp 1-9. Available: http://www.koreascience.or.kr/article/JAKO201323965810368.page
  7. H. Ling, S. Liu, Z. Zheng, F. Yan. (2018, June). Organic Flexible Electronics. Small Methods. [Online]. 2(10), pp. 1800070. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.201800070
  8. J. H. Koo, D. C. Kim, H. J. Shim, T. H. Kim, D. H. Kim. (2018, July). Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Adv. Funct. Mater. [Online]. 28(35), pp. 1801834. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201801834
  9. T. Ito, H. Shirakawa, S. Ikeda. (1974, Jan.). Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler‐type catalyst solution. Journal of Polymer Science. [Online]. 12(1), pp. 11-20. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1974.170120102
  10. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti. (2009, Jan.). A high-mobility electron-transporting polymer for printed transistors. Nature. [Online]. 457, pp. 679-686. Available: https://www.nature.com/articles/nature07727 https://doi.org/10.1038/nature07727
  11. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa. (2011, July). Inkjet printing of single-crystal films. Nature. [Online]. 475, pp. 364-367. Available: https://www.nature.com/articles/nature10313 https://doi.org/10.1038/nature10313
  12. E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu, D. J. Gundlach. (2016, Mar.). Mobility overestimation due to gated contacts in organic field-effect transistors. Nature Communications. [Online]. 7, pp. 10908. Available: https://www.nature.com/articles/ncomms10908?origin=ppub https://doi.org/10.1038/ncomms10908
  13. D. Ji, L. Jiang, X. Cai, H. Dong, Q. Meng, G. Tian, D. Wu, J. Li, W. Hu. (2013, Oct.). Large scale, flexible organic transistor arrays and circuits based on polyimide materials. Organic Electronics. [Online]. 14(10), pp. 2528-2533. Available: https://www.sciencedirect.com/science/article/abs/pii/S156611991300311X?via%3Dihub https://doi.org/10.1016/j.orgel.2013.06.028
  14. K. W. Shin, C. W. Yang, S. Y. Yang, H. Y. Jeon, C. E. Park. (2006, Feb.). Effects of polymer gate dielectrics roughness on pentacene field-effect transistors. Appl. Phys. Lett. [Online]. 88(7), pp. 072109. Available: https://aip.scitation.org/doi/10.1063/1.2176858
  15. Y. He, H. Dong, Q. Meng, L. Jiang, W. Shao, L. He, W. Hu. (2011, Nov.). Mica, a Potential Two‐Dimensional‐Crystal Gate Insulator for Organic Field‐Effect Transistors. Adv. Mater. [Online]. 23(46), pp. 5502-5507. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201103592
  16. T. Xu, S. Guo, W. Qi, S. Li, M. Xu, W. Xie, W. Wang. (2020, Jan.). High-performance flexible organic thin film transistor nonvolatile memory based on molecular floating-gate and pn-heterojunction channel layer. Appl. Phys. Lett. [Online]. 116(2), pp. 023301. Available: https://aip.scitation.org/doi/10.1063/1.5135043
  17. A. SD, H. Battula, P. K. R. Boppidi, S. Kundu, C. Chakraborty, S. Jayanty. (2020, Jan.). Photophysical, electrochemical and flexible organic resistive switching memory device application of a small molecule: 7,7-bis (hydroxyethylpiperazino) dicyanoquinodimethane. Organic Electronics. [Online]. 76, pp. 105457. Available: https://www.sciencedirect.com/science/article/pii/S1566119919304847?via%3Dihub https://doi.org/10.1016/j.orgel.2019.105457
  18. H. Yang, Y. Liu, X. Wu, Y. Yan, X. Wang, S. Lan, G. Zhang, H. Chen, T. Guo. (2019, Sep.). High-Performance All-Inorganic Perovskite-Quantum- Dot-Based Flexible Organic Phototransistor Memory with Architecture Design. Adv. Electon. Mater. [Online]. 5(12), pp. 1900864. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201900864
  19. Q. J. Sun, J. Zhuang, Y. Yan, L. Zhou, Y. Zhou, S. T. Han, W. Wu, H. Y. Peng, R. K. Y. Li, A. L. R. Vellaisamy. (2016, May). Polymer-modified solution-processed metal oxide dielectrics on aluminum foil substrate for flexible organic transistors. Physica Status Solidi (a). [Online]. 213(9), pp. 2509-2517. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201600067
  20. Y. Yu, Q. Ma, H. Ling, W. Li, R. Ju, L. Bian, N. Shi, Y. Qian, M. Yi, L. Xie, W. Huang. (2019, Sep.). Small-Molecule-Based Organic Field-Effect Transistor for Nonvolatile Memory and Artificial Synapse. Adv. Funct. Mater. [Online]. 29(50), pp. 1904602. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201904602
  21. M. Lenzlinger, E. H. Snow. (1969, Jan.). FowlerNordheim Tunneling into Thermally Grown SiO2. J. Appl. Phys. [Online]. 40(1), pp. 278-283. Available: https://aip.scitation.org/doi/10.1063/1.1657043
  22. K. J. Baeg, Y. Y. Noh, J. E. Ghim, B. G. Lim, D. Y. Kim. (2008, Nov.). Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory. Adv. Funct. Mater. [Online]. 18(22), pp. 3678-3685. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.200800378
  23. Y. H. Park, K. J. Baeg, C. I. Kim. (2019, Feb.). Solution-Processed Nonvolatile Organic Transistor Memory Based on Semiconductor Blends. ACS Appl. Mater. Interfaces. [Online]. 11, pp. 8327-8336. Available: https://pubs.acs.org/doi/10.1021/acsami.8b20571
  24. M. Kaltenbrunner, P. Stadler, R. Schwodiauer, A. W. Hassel, N. S. Sariciftci, S. Bauer. (2011, Sep.). Anodized Aluminum Oxide Thin Films for Room-Temperature-Processed, Flexible, Low-Voltage Organic Non- Volatile Memory Elements with Excellent Charge Retention. Adv. Mater. [Online]. 23(42), pp. 4892-4896. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201103189
  25. A. Rani, J. M. Song, M. J. Lee, J. S. Lee. (2012, Nov.). Reduced graphene oxide based flexible organic charge trap memory devices. Appl. Phys. Lett. [Online]. 101(23), pp. 233308. Available: https://aip.scitation.org/doi/10.1063/1.4769990
  26. J. H. Jung, S. H. Kim, H. J. Kim, J. N. Park, J. H. Oh. (2015, July). High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles. Small. [Online]. 11(37), pp. 4976-4984. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201501382
  27. S. W. Lee, H. J. Seong, S. G. Im, H. N. Moon, S. H. Yoo. (2017, Sep.). Organic flash memory on various flexible substrates for foldable and disposable electronics. Nature Communications. [Online]. 8(725), pp. 1-9. Available: https://www.nature.com/articles/s41467-017-00805-z https://doi.org/10.1038/s41467-016-0009-6
  28. K. Asadi, D. M. de Leeuw, B. de Boer, P. W. M. Blom. (2008, June). Organic non-volatile memories from ferroelectric phase-separated blends. Nature Materials. [Online]. 7, pp. 547-550. Available: https://www.nature.com/articles/nmat2207 https://doi.org/10.1038/nmat2207
  29. S. W. Jung, B. S. Na, K. J. Baeg, M. S. Kim, S. M. Yoon, J. H. Kim, D. Y. Kim, I. K. You. (2013, Aug.). Nonvolatile Ferroelectric P(VDF‐TrFE) Memory Transistors Based on Inkjet‐Printed Organic Semiconductor. ETRI Journal. [Online]. 35(4), pp. 734-737. Available: https://onlinelibrary.wiley.com/doi/full/10.4218/etrij.13.0212.0280
  30. K. Asadi, M. Li, P. W. M. Blom, M. Kemerink, D. M. de Leeuw. (2011, Dec.). Organic ferroelectric opto-electronic memories. Materials Today. [Online]. 14, pp. 592-599. Available: https://www.sciencedirect.com/science/article/pii/S1369702111703005 https://doi.org/10.1016/S1369-7021(11)70300-5
  31. M. Xu, L. Xiang, W. Wang, W. Xie, D. Zhou. (2017, Oct.). Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric. Appl. Phys. Lett. [Online]. 111(18), pp. 183302. Available: https://aip.scitation.org/doi/full/10.1063/1.4993857
  32. M. Xu, S. Guo, L. Xiang, T. Xu, W. Xie, W. Wang. (2018, Mar.). High Mobility Flexible Ferroelectric Organic Transistor Nonvolatile Memory With an Ultrathin AlOX Interfacial Layer. IEEE Trans. Elect. Devices. [Online]. 65, pp. 1113-1118. Available: https://ieeexplore.ieee.org/document/8287822 https://doi.org/10.1109/TED.2018.2797936
  33. E. Li, X. Wu, S. Lan, Q. Yang, Y. Fang, H. Chen, T. Guo. (2018, Dec.). Flexible ultra-short channel organic ferroelectric non-volatile memory transistors. J. Mater. Chem. C. [Online]. 7, pp. 998-1005. Available: https://pubs.rsc.org/en/content/articlelanding/2019/TC/C8TC04892D#!divAbstract https://doi.org/10.1039/C8TC04892D
  34. M. J. Kang, S. A. Lee, S. J. Jang, S. B. Hwang, S. K. Lee, S. K. Bae, J. M. Hong, S. H. Lee, K. U. Jeong, J. A. Lim, T. W. Kim. (2019, May). Low-Voltage Organic Transistor Memory Fiber with a Nanograined Organic Ferroelectric Film. ACS Appl. Mater. Interfaces. [Online]. 11, pp. 22575-22582. Available: https://pubs.acs.org/doi/10.1021/acsami.9b03564
  35. T. H. Lee, Y. Chen. (2012, Feb.). Organic resistive nonvolatile memory materials. MRS Bulletin. [Online]. 37(2), pp. 144-149. Available: https://www.cambridge.org/core/journals/mrs-bulletin/article/organic-resistive-nonvolatile-memory-materials/70B43727FFC6024818AA9E4A7FF22C4B https://doi.org/10.1557/mrs.2012.4
  36. Y. Lai, K. Ohshimizu, W. Y. Lee, J. C. Hsu, T. Higashihara, M. Ueda, W. C. Chen. (2011, Aug.). Electrically bistable memory devices based on all-conjugated block copolythiophenes and their PCBM composite films. J. Mater. Chem. [Online]. 21(38), pp. 14502-14508. Available: https://pubs.rsc.org/en/content/articlelanding/2011/JM/c1jm11570g https://doi.org/10.1039/c1jm11570g
  37. P. Zhang, B. Xu, C. Gao, G. Chen, M. Gao. (2016, Oct.). Facile Synthesis of Co9Se8 Quantum Dots as Charge Traps for Flexible Organic Resistive Switching Memory Device. ACS Appl. Mater. Interfaces. [Online]. 8(44), pp. 30336-30343. Available: https://pubs.acs.org/doi/10.1021/acsami.6b09616
  38. I. Rosales-Gallegos, J.A. Avila-Nino, D. Hernandez-Arriaga, M. Reyes-Reyes, R. Lopez-Sandoval. (2017, June). Flexible rewritable organic memory devices using nitrogen-doped CNTs/PEDOT:PSS composites. Organic Electronics. [Online]. 45, pp. 159-168. Available: https://www.sciencedirect.com/science/article/abs/pii/S1566119917301179?via%3Dihub https://doi.org/10.1016/j.orgel.2017.03.014
  39. Z. Jin, Y. Chen, Q.Zhou, P. Mao, H. Liu, J. Wang, Y. Li. (2017, Jan.). Graphdiyne for Multilevel Flexible Organic Resistive Random Access Memory Devices. Mater. Chem. Front. [Online]. 1, pp. 1338-1341. Available: https://pubs.rsc.org/--/content/articlehtml/2017/qm/c7qm00009j https://doi.org/10.1039/C7QM00009J
  40. G. Casula, Y. Busby, A. Franquet, V. Spampinato, L. Houssiau, A. Bonfiglio, P. Cosseddu. (2019, Jan.). A flexible organic memory device with a clearly disclosed resistive switching mechanism. Organic Electronics. [Online]. 64, pp. 209-215. Available: https://www.sciencedirect.com/science/article/abs/pii/S1566119918305330?via%3Dihub https://doi.org/10.1016/j.orgel.2018.10.018
  41. Y. Y. Zhao, W. J. Sun, M. G. Wang, J. H. He, J. M. Lu. (2019, Nov.). Flexible Ternary Resistive Memory from Organic Bulk Heterojunction. Adv. Mater. Tech. [Online]. 5(1), pp. 1900681. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/admt.201900681