DOI QR코드

DOI QR Code

ON DIVERSITY OF CERTAIN t-INTERSECTING FAMILIES

  • Ku, Cheng Yeaw (Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological University) ;
  • Wong, Kok Bin (Institute of Mathematical Sciences University of Malaya)
  • Received : 2019.03.18
  • Accepted : 2020.01.31
  • Published : 2020.07.31

Abstract

Let [n] = {1, 2, …, n} and 2[n] be the set of all subsets of [n]. For a family 𝓕 ⊆ 2[n], its diversity, denoted by div(𝓕), is defined to be $$div(\mathcal{F})=\min_{x{\in}[n]}\{{\mid}{\mathcal{F}}(\bar{x}){\mid}\}$$, where ${\mathcal{F}}(\bar{x})=\{F{\in}{\mathcal{F}}:x{\not\in}F\}$. Basically, div(𝓕) measures how far 𝓕 is from a trivial intersecting family, which is called a star. In this paper, we consider a generalization of diversity for t-intersecting family.

Keywords

Acknowledgement

We would like to thank the anonymous referee for the comments and suggestions that have improved the organization of this paper. This project is partially supported by the Fundamental Research Grant Scheme (FRGS) FRGS/1/2019/STG06/UM/02/10.

References

  1. R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), no. 2, 125-136. https://doi.org/10.1006/eujc.1995.0092
  2. R. Ahlswede and L. H. Khachatrian, The diametric theorem in Hamming spaces-optimal anticodes, Adv. in Appl. Math. 20 (1998), no. 4, 429-449. https://doi.org/10.1006/aama.1998.0588
  3. C. Bey, On cross-intersecting families of sets, Graphs Combin. 21 (2005), no. 2, 161-168. https://doi.org/10.1007/s00373-004-0598-4
  4. P. J. Cameron and C. Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003), no. 7, 881-890. https://doi.org/10.1016/S0195-6698(03)00078-7
  5. A. Chowdhury and B. Patkos, Shadows and intersections in vector spaces, J. Combin. Theory Ser. A 117 (2010), no. 8, 1095-1106. https://doi.org/10.1016/j.jcta.2009.10.010
  6. D. Ellis, Stability for t-intersecting families of permutations, J. Combin. Theory Ser. A 118 (2011), no. 1, 208-227. https://doi.org/10.1016/j.jcta.2010.04.005
  7. D. Ellis, E. Friedgut, and H. Pilpel, Intersecting families of permutations, J. Amer. Math. Soc. 24 (2011), no. 3, 649-682. https://doi.org/10.1090/S0894-0347-2011-00690-5
  8. P. Erdos, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320. https://doi.org/10.1093/qmath/12.1.313
  9. P. Frankl, The Erdos-Ko-Rado theorem is true for n = ckt, in Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, 365-375, Colloq. Math. Soc. Janos Bolyai, 18, North-Holland, Amsterdam, 1978.
  10. P. Frankl, Erdos-Ko-Rado theorem with conditions on the maximal degree, J. Combin. Theory Ser. A 46 (1987), no. 2, 252-263. https://doi.org/10.1016/0097-3165(87)90005-7
  11. P. Frankl, Antichains of fixed diameter, Mosc. J. Comb. Number Theory 7 (2017), no. 3, 3-33.
  12. P. Frankl and A. Kupavskii, Erdos-Ko-Rado theorem for {$0,{\pm}1$}vectors, J. Combin. Theory Ser. A 155 (2018), 157-179. https://doi.org/10.1016/j.jcta.2017.11.003
  13. P. Frankl, S. J. Lee, M. Siggers, and N. Tokushige, An Erdos-Ko-Rado theorem for cross t-intersecting families, J. Combin. Theory Ser. A 128 (2014), 207-249. https://doi.org/10.1016/j.jcta.2014.08.006
  14. P. Frankl, M. Shinohara, and N. Tokushige, Multiply union families in $N^n$, European J. Combin. 58 (2016), 66-74. https://doi.org/10.1016/j.ejc.2016.05.007
  15. P. Frankl and N. Tokushige, On r-cross intersecting families of sets, Combin. Probab. Comput. 20 (2011), no. 5, 749-752. https://doi.org/10.1017/S0963548311000289
  16. P. Frankl and N. Tokushige, Intersection problems in the q-ary cube, J. Combin. Theory Ser. A 141 (2016), 90-126. https://doi.org/10.1016/j.jcta.2016.02.006
  17. P. Frankl and R. M. Wilson, The Erdos-Ko-Rado theorem for vector spaces, J. Combin. Theory Ser. A 43 (1986), no. 2, 228-236. https://doi.org/10.1016/0097-3165(86)90063-4
  18. C. Godsil and K. Meagher, A new proof of the Erdos-Ko-Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009), no. 2, 404-414. https://doi.org/10.1016/j.ejc.2008.05.006
  19. C. Y. Ku and D. Renshaw, Erdos-Ko-Rado theorems for permutations and set partitions, J. Combin. Theory Ser. A 115 (2008), no. 6, 1008-1020. https://doi.org/10.1016/j.jcta.2007.12.004
  20. C. Y. Ku and K. B. Wong, On cross-intersecting families of set partitions, Electron. J. Combin. 19 (2012), no. 4, #49.
  21. C. Y. Ku and K. B. Wong, An analogue of the Erdos-Ko-Rado theorem for weak compositions, Discrete Math. 313 (2013), no. 21, 2463-2468. https://doi.org/10.1016/j.disc.2013.07.012
  22. C. Y. Ku and K. B. Wong, On r-cross intersecting families of sets, Far East J. Math. Sci. 75 (2013), 295-300.
  23. C. Y. Ku and K. B. Wong, An analogue of the Hilton-Milner theorem for set partitions, J. Combin. Theory Ser. A 120 (2013), no. 7, 1508-1520. https://doi.org/10.1016/j.jcta.2013.05.001
  24. C. Y. Ku and K. B. Wong, An Erd}os-Ko-Rado theorem for permutations with fixed number of cycles, Electron. J. Combin. 21 (2014), no. 3, #P3.16. https://doi.org/10.37236/4071
  25. C. Y. Ku and K. B. Wong, On r-cross t-intersecting families for weak compositions, Discrete Math. 338 (2015), no. 7, 1090-1095. https://doi.org/10.1016/j.disc.2015.01.015
  26. C. Y. Ku and K. B. Wong, A Deza-Frankl type theorem for set partitions, Electron. J. Combin. 22 (2015), no. 1, #P1.84. https://doi.org/10.37236/4987
  27. C. Y. Ku and K. B. Wong, An analogue of the Hilton-Milner theorem for weak compositions, Bull. Korean Math. Soc. 52 (2015), no. 3, 1007-1025. https://doi.org/10.4134/BKMS.2015.52.3.1007
  28. C. Y. Ku and K. B. Wong, A non-trivial intersection theorem for permutations with fixed number of cycles, Discrete Math. 339 (2016), no. 2, 646-657. https://doi.org/10.1016/j.disc.2015.09.032
  29. C. Y. Ku and K. B. Wong, An Erdos-Ko-Rado theorem for minimal covers, Bull. Korean Math. Soc. 54 (2017), no. 3, 875-894. https://doi.org/10.4134/BKMS.b160334
  30. C. Y. Ku and K. B. Wong, Erdos-Ko-Rado theorems for set partitions with certain block size, J. Combin. Theory Ser. A 172 (2020), 105180, 27 pp. https://doi.org/10.1016/j.jcta.2019.105180
  31. N. Lemons and C. Palmer, The unbalance of set systems, Graphs Combin. 24 (2008), no. 4, 361-365. https://doi.org/10.1007/s00373-008-0793-9
  32. M. Matsumoto and N. Tokushige, The exact bound in the Erd}os-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), no. 1, 90-97. https://doi.org/10.1016/0097-3165(89)90065-4
  33. A. Moon, An analogue of the Erd}os-Ko-Rado theorem for the Hamming schemes H(n; q), J. Combin. Theory Ser. A 32 (1982), no. 3, 386-390. https://doi.org/10.1016/0097-3165(82)90054-1
  34. L. Pyber, A new generalization of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), no. 1, 85-90. https://doi.org/10.1016/0097-3165(86)90025-7
  35. N. Tokushige, A product version of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 118 (2011), no. 5, 1575-1587. https://doi.org/10.1016/j.jcta.2011.01.010
  36. R. M. Wilson, The exact bound in the Erdos-Ko-Rado theorem, Combinatorica 4 (1984), no. 2-3, 247-257. https://doi.org/10.1007/BF02579226