DOI QR코드

DOI QR Code

SHARP BOUNDS FOR INITIAL COEFFICIENTS AND THE SECOND HANKEL DETERMINANT

  • Ali, Rosihan M. (School of Mathematical Sciences Universiti Sains Malaysia) ;
  • Lee, See Keong (School of Mathematical Sciences Universiti Sains Malaysia) ;
  • Obradovic, Milutin (Department of Mathematics Faculty of Civil Engineering University of Belgrade)
  • Received : 2019.05.23
  • Accepted : 2020.06.04
  • Published : 2020.07.31

Abstract

For functions f(z) = z + a2z2 + a3z3 + ⋯ belonging to particular classes, this paper finds sharp bounds for the initial coefficients a2, a3, a4, as well as the sharp estimate for the second order Hankel determinant H2(2) = a2a4 - a23. Two classes are treated: first is the class consisting of f(z) = z + a2z2 + a3z3 + ⋯ in the unit disk 𝔻 satisfying $$\|\(\frac{z}{f(z)}\)^{1+{\alpha}}\;f^{\prime}(z)-1\|<{\lambda},\;0<{\alpha}<1,\;0<{\lambda}{\leq}1.$$ The second class consists of Bazilevič functions f(z) = z+a2z2+a3z3+⋯ in 𝔻 satisfying $$Re\{\(\frac{f(z)}{z}\)^{{\alpha}-1}\;f^{\prime}(z)\}>0,\;{\alpha}>0.$$

Keywords

References

  1. L. A. Aksent'ev, Sufficient conditions for univalence of regular functions, Izv. Vyssh. Uchebn. Zaved. Mat. 1958 (1958), no. 3 (4), 3-7.
  2. R. Fournier and S. Ponnusamy, A class of locally univalent functions defined by a differential inequality, Complex Var. Elliptic Equ. 52 (2007), no. 1, 1-8. https://doi.org/10.1080/17476930600780149
  3. D. V. Krishna and T. RamReddy, Second Hankel determinant for the class of Bazilevic functions, Stud. Univ. Babes-Bolyai Math. 60 (2015), no. 3, 413-420. https://doi.org/10.1080/17476933.2015.1012162
  4. S. K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), 281, 17 pp. https://doi.org/10.1186/1029-242X-2013-281
  5. Marjono, J. Soko l, and D. K. Thomas, The fifth and sixth coefficients for Bazilevic functions $B_1$(${\alpha}$), Mediterr. J. Math. 14 (2017), no. 4, Paper No. 158, 11 pp. https://doi.org/10.1007/s00009-017-0958-y
  6. M. Obradovic, A class of univalent functions, Hokkaido Math. J. 27 (1998), no. 2, 329-335. https://doi.org/10.14492/hokmj/1351001289
  7. M. Obradovic, A class of univalent functions. II, Hokkaido Math. J. 28 (1999), no. 3, 557-562. https://doi.org/10.14492/hokmj/1351001237
  8. M. Obradovic, S. Ponnusamy, and K.-J. Wirths, Geometric studies on the class U($\lambda$), Bull. Malays. Math. Sci. Soc. 39 (2016), no. 3, 1259-1284. https://doi.org/10.1007/s40840-015-0263-5
  9. S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33 (1972), 392-394. https://doi.org/10.2307/2038067
  10. Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. (2) 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
  11. Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. https://doi.org/10.1112/S002557930000807X
  12. D. V. Prokhorov and J. Szynal, Inverse coefficients for (${\alpha}$, ${\beta}$)-convex functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 35 (1981), 125-143 (1984).
  13. R. Singh, On Bazilevic functions, Proc. Amer. Math. Soc. 38 (1973), 261-271. https://doi.org/10.2307/2039275
  14. A. Vasudevarao and H. Yanagihara, On the growth of analytic functions in the class U($\lambda$), Comput. Methods Funct. Theory 13 (2013), no. 4, 613-634. https://doi.org/10.1007/s40315-013-0045-8