DOI QR코드

DOI QR Code

ON JORDAN AND JORDAN HIGHER DERIVABLE MAPS OF RINGS

  • Liu, Lei (School of Mathematics and statistics Xidian University)
  • Received : 2019.07.05
  • Accepted : 2019.09.05
  • Published : 2020.07.31

Abstract

Let 𝓡 be a 2-torsion free unital ring containing a non-trivial idempotent. An additive map 𝛿 from 𝓡 into itself is called a Jordan derivable map at commutative zero point if 𝛿(AB + BA) = 𝛿(A)B + B𝛿(A) + A𝛿(B) + 𝛿(B)A for all A, B ∈ 𝓡 with AB = BA = 0. In this paper, we prove that, under some mild conditions, each Jordan derivable map at commutative zero point has the form 𝛿(A) = 𝜓(A) + CA for all A ∈ 𝓡, where 𝜓 is an additive Jordan derivation of 𝓡 and C is a central element of 𝓡. Then we generalize the result to the case of Jordan higher derivable maps at commutative zero point. These results are also applied to some operator algebras.

Keywords

Acknowledgement

This work is Supported by National Natural Science Foundation of China(No. 11671078).

References

  1. D. Benkovic, Jordan derivations and antiderivations on triangular matrices, Linear Algebra Appl. 397 (2005), 235-244. https://doi.org/10.1016/j.laa.2004.10.017
  2. M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1003-1006. https://doi.org/10.2307/2047580
  3. M. Bresar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh, Sect. A 137 (2007), 9-21. https://doi.org/10.1017/S0308210504001088
  4. M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein, Quaest. Math. 25 (2002), no. 2, 249-257. https://doi.org/10.2989/16073600209486012
  5. M. Ferrero and C. Haetinger, Higher derivations of semiprime rings, Comm. Algebra 30 (2002), no. 5, 2321-2333. https://doi.org/10.1081/AGB-120003471
  6. I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. https://doi.org/10.2307/2032688
  7. C. R. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717-735. http://projecteuclid.org/euclid.pjm/1102969919 https://doi.org/10.2140/pjm.1971.38.717
  8. M. Mirzavaziri, Characterization of higher derivations on algebras, Comm. Algebra 38 (2010), no. 3, 981-987. https://doi.org/10.1080/00927870902828751
  9. P. Ribenboim, Higher derivations of rings. I, Rev. Roumaine Math. Pures Appl. 16 (1971), 77-110.
  10. P. Ribenboim, Higher derivations of rings. II, Rev. Roumaine Math. Pures Appl. 16 (1971), 245-272.
  11. A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214. https://doi.org/10.2307/2036730
  12. F. Wei and Z. Xiao, Generalized Jordan triple higher derivations on semiprime rings, Bull. Korean Math. Soc. 46 (2009), no. 3, 553-565. https://doi.org/10.4134/BKMS.2009.46.3.553
  13. F. Wei and Z. Xiao, Higher derivations of triangular algebras and its generalizations, Linear Algebra Appl. 435 (2011), no. 5, 1034-1054. https://doi.org/10.1016/j.laa.2011.02.027
  14. Z. Xiao and F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl. 432 (2010), no. 10, 2615-2622. https://doi.org/10.1016/j.laa.2009.12.006
  15. J.-H. Zhang and W.-Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), no. 1, 251-255. https://doi.org/10.1016/j.laa.2006.04.015
  16. S. Zhao and J. Zhu, Jordan all-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl. 433 (2010), no. 11-12, 1922-1938. https://doi.org/10.1016/j.laa.2010.07.006