DOI QR코드

DOI QR Code

ANCIENT SOLUTIONS OF CODIMENSION TWO SURFACES WITH CURVATURE PINCHING IN ℝ4

  • Ji, Zhengchao (Center of Mathematical Sciences Zhejiang University)
  • Received : 2019.08.03
  • Accepted : 2020.01.03
  • Published : 2020.07.31

Abstract

We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find conditions on the second fundamental form that characterize the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension two surfaces, which is different from the conditions of Risa and Sinestrari in [26] and we also remove the condition that the second fundamental form is uniformly bounded when t ∈ (-∞, -1).

Keywords

References

  1. B. Andrews, Noncollapsing in mean-convex mean curvature flow, Geom. Topol. 16 (2012), no. 3, 1413-1418. https://doi.org/10.2140/gt.2012.16.1413
  2. B. Andrews and C. Baker, Mean curvature ow of pinched submanifolds to spheres, J. Differential Geom. 85 (2010), no. 3, 357-395. http://projecteuclid.org/euclid.jdg/1292940688
  3. S. B. Angenent, Shrinking doughnuts, in Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), 21-38, Progr. Nonlinear Differential Equations Appl., 7, Birkhauser Boston, Boston, MA, 1992.
  4. S. B. Angenent, Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow, Netw. Heterog. Media 8 (2013), no. 1, 1-8. https://doi.org/10.3934/nhm.2013.8.1
  5. S. Angenent, P. Daskalopoulos, and N. Sesum, Unique asymptotics of ancient convex mean curvature flow solutions, J. Differential Geom. 111 (2019), no. 3, 381-455. https://doi.org/10.4310/jdg/1552442605
  6. C. Baker and H. T. Nguyen, Codimension two surfaces pinched by normal curvature evolving by mean curvature flow, Ann. Inst. H. Poincare Anal. Non Lineaire 34 (2017), no. 6, 1599-1610. https://doi.org/10.1016/j.anihpc.2016.10.010
  7. S. Brendle and K. Choi, Uniqueness of convex ancient solutions to mean curvature flow in $R^3$, Invent. Math. 217 (2019), no. 1, 35-76. https://doi.org/10.1007/s00222-019-00859-4
  8. S. Brendle, G. Huisken, and C. Sinestrari, Ancient solutions to the Ricci flow with pinched curvature, Duke Math. J. 158 (2011), no. 3, 537-551. https://doi.org/10.1215/00127094-1345672
  9. P. Bryan and J. Louie, Classification of convex ancient solutions to curve shortening flow on the sphere, J. Geom. Anal. 26 (2016), no. 2, 858-872. https://doi.org/10.1007/s12220-015-9574-x
  10. P. Daskalopoulos, R. Hamilton, and N. Sesum, Classification of compact ancient solutions to the curve shortening flow, J. Differential Geom. 84 (2010), no. 3, 455-464. http://projecteuclid.org/euclid.jdg/1279114297
  11. R. S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Int. Press, Cambridge, MA, 1995.
  12. R. Haslhofer and O. Hershkovits, Ancient solutions of the mean curvature flow, Comm. Anal. Geom. 24 (2016), no. 3, 593-604. https://doi.org/10.4310/CAG.2016.v24.n3.a6
  13. R. Haslhofer and B. Kleiner, Mean curvature flow of mean convex hypersurfaces, Comm. Pure Appl. Math. 70 (2017), no. 3, 511-546. https://doi.org/10.1002/cpa.21650
  14. G. Huisken, Deforming hypersurfaces of the sphere by their mean curvature, Math. Z. 195 (1987), no. 2, 205-219. https://doi.org/10.1007/BF01166458
  15. G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), no. 1, 45-70. https://doi.org/10.1007/BF02392946
  16. G. Huisken and C. Sinestrari, Convex ancient solutions of the mean curvature flow, J. Differential Geom. 101 (2015), no. 2, 267-287. http://projecteuclid.org/euclid.jdg/1442364652
  17. M. Langford, A general pinching principle for mean curvature flow and applications, Calc. Var. Partial Differential Equations 56 (2017), no. 4, Art. 107, 31 pp. https://doi.org/10.1007/s00526-017-1193-x
  18. M. Langford, S. Lynch, MSharp one-sided curvature estimates for fully nonlinear curvature flows and applications to ancient solutions, arXiv:1704.03802 (2017).
  19. L. Lei and H. W. Xu, A new version of Huisken's convergence theorem for mean curvature flow in spheres, arXiv:1505.07217 (2014).
  20. L. Lei and H. W. Xu, An optimal convergence theorem for mean curvature flow arbitrary codimension in hyperbolic spaces, arXiv:1503.06747 (2015).
  21. L. Lei and H. W. Xu, Mean curvature flow of arbitrary codimension in spheres and sharp differentiable sphere theorem, arXiv:1506.06371v2 (2015).
  22. K. F. Liu, H. W. Xu, F. Ye, and E. T. Zhao, The extension and convergence of mean curvature flow in higher codimension, Trans. Amer. Math. Soc. 370 (2018), no. 3, 2231-2262. https://doi.org/10.1090/tran/7281
  23. K. F. Liu, H. W. Xu, F. Ye, and E. T. Zhao, Mean curvature flow of higher codimension in hyperbolic spaces, Comm. Anal. Geom. 21 (2013), no. 3, 651-669. https://doi.org/10.4310/CAG.2013.v21.n3.a8
  24. K. F. Liu, H. W. Xu, and E. T. Zhao, Mean curvature flow of higher codimension in hyperbolic spaces, Comm. Anal. Geom. 21 (2013), no. 3, 651-669. https://doi.org/10.4310/CAG.2013.v21.n3.a8
  25. S. Lynch, H. T. Nguyen, Pinched ancient solutions to the high codimension mean curvature flow, arXiv:1709.09697 (2017).
  26. S. Risa and C. Sinestrari, Ancient solutions of geometric flows with curvature pinching, J. Geom. Anal. 29 (2019), no. 2, 1206-1232. https://doi.org/10.1007/s12220-018-0036-0
  27. B. White, The nature of singularities in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 16 (2003), no. 1, 123-138. https://doi.org/10.1090/S0894-0347-02-00406-X