DOI QR코드

DOI QR Code

Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method

반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도

  • Han, Chang-Suk (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Jin, Sung-Yooun (Dept. of ICT Automotive Engineering, Hoseo University)
  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 진성윤 (호서대학교 자동차ICT공학과)
  • Received : 2020.05.16
  • Accepted : 2020.07.02
  • Published : 2020.07.27

Abstract

A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.

Keywords

References

  1. C. Bartuli, T. Valente, F. Cipri, E. Bemporad and M. Tului, J. Thermal Spray Tech., 14, 187 (2005). https://doi.org/10.1361/10599630523746
  2. S. Matthews, M. Hyland and B. James, J. Thermal Spray Tech., 13, 526 (2004). https://doi.org/10.1361/10599630421442
  3. M. Manjunatha, R. S. Kulkarni and M. Krishna, Proc. Mater. Sci., 5, 622 (2014). https://doi.org/10.1016/j.mspro.2014.07.308
  4. N. A. Allsop, A. Schonmann, A. Belaidi, H. J. Muffler, B. Mertesacker, W. Bohne, E. Strub, J. Rohrich, M. C. Lux-Steiner and C. H. Fischer, Thin Solid Films, 513, 52 (2006). https://doi.org/10.1016/j.tsf.2006.01.019
  5. Y. Sun, K. Kulkarni, A. K. Sachdev and E. J. Lavernia, Metall. Mater. Trans. A, 45, 2750 (2014). https://doi.org/10.1007/s11661-014-2215-3
  6. H. Wang and D. Gu, J. Compos. Mater., 49, 1639 (2015). https://doi.org/10.1177/0021998314538870
  7. Z. Yang, L. Zhang, X. Tian, Y. Liu, P. He and J. Feng, Mater. Charact., 79, 52 (2013). https://doi.org/10.1016/j.matchar.2013.02.010
  8. V. Chawla, D. Holec and P. H. Mayrhofer, Thin Solid Films, 565, 94 (2014). https://doi.org/10.1016/j.tsf.2014.06.051
  9. P. Bhattacharya, P. Bellon, R. S. Averback and S. J. Hales, J. Alloys Compd., 368, 187 (2004). https://doi.org/10.1016/j.jallcom.2003.08.079
  10. Robert W. Cahn, Ternary Alloys : A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, 3th ed. G. Petzow and G. Effenberg, (VCH Verlagsgeselshaft, Weinheim, and VCH Publications New York, NY). pp. 557 (1990).
  11. A. H. Johnstone, Handbook of Chemistry and Physics, 69th Edition,pp. C-105, C-174, C-351 and C-549, CRC Press, Boca Raton, Florida (1988).
  12. T. Cegan, M. Cagala, M. Kursa, P. Kawulok, S. Rusz, J. Jurica and J. Vontorova, Mater. Tech., 48, 831 (2014).
  13. G. C. Wang, J. Zhang and X. W. Liu, Mater. Sci. Forum, 762, 607 (2013). https://doi.org/10.4028/www.scientific.net/MSF.762.607
  14. M. Hasan, J. Stokes, L. Looney and M. S. J. Hashmi, Surf. Coat. Technol., 202, 4006 (2008). https://doi.org/10.1016/j.surfcoat.2008.02.016
  15. Y. L. Chen, M. Yan, P. J. Lu, Z. U. Li and C. W. Zeng, Adv. Mater. Res., 690-693, 643 (2013). https://doi.org/10.4028/www.scientific.net/AMR.690-693.643
  16. S. Rech, A. Surpi, S. Vezzu, A. Patelli, A. Trentin, J. Frodelius, L. Hultman and P. Eklund, Vacuum, 94, 69 (2013). https://doi.org/10.1016/j.vacuum.2013.01.023
  17. Z. Feng, P. Ke and A. Wang, J. Mater. Sci. Tech., 31, 1193 (2015). https://doi.org/10.1016/j.jmst.2015.10.014
  18. S. R. Kulkarni and A. V. Wu, J. Alloys Compd., 490, 155 (2010). https://doi.org/10.1016/j.jallcom.2009.10.085
  19. Y. Lin, R. H. Zee and B. A. Chin, Metall. Trans., 22A, 859 (1991).
  20. E. Sadeghi, F. Karimzadeh and M. H. Abbasi, J. Alloys Compd., 576, 317 (2013). https://doi.org/10.1016/j.jallcom.2013.05.196