DOI QR코드

DOI QR Code

Toxic effects of antifouling agents (diuron and irgarol) on fertilization and normal embryogenesis rates in the sea urchin (Mesocentrotus nudus)

둥근성게(Mesocentrotus nudus)의 수정 및 배아 발생률에 미치는 신방오도료(Diuron, Irgarol)의 독성영향

  • Hwang, Un-Ki (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science(NIFS)) ;
  • Lee, Ju-Wook (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science(NIFS)) ;
  • Park, Yun-Ho (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science(NIFS)) ;
  • Heo, Seung (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science(NIFS)) ;
  • Choi, Hoon (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science(NIFS))
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이주욱 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 박윤호 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 허승 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 최훈 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2020.02.26
  • Accepted : 2020.04.07
  • Published : 2020.06.30

Abstract

Toxic assessment of antifouling agents (diuron and irgarol) was conducted using the fertilization and the normal embryogenesis rates of the sea urchin, Mesocentrotus nudus. Bioassessment began with male and female reproductive cell induction. White or cream-colored male gametes(sperm) and yellow or orange-colored female gametes (eggs) were acquired and fully washed, separately. Then, the fertilization and normal embryogenesis rates were measured after 10 min and 48 h of exposure to the toxicants, respectively. The fertilization and embryo development rates were greater than 90% in the control, validating the suitability of both endpoints. The normal embryogenesis rates were significantly decreased with increasing concentrations of diuron and irgarol, but no changes in the fertilization rates were observed in concentrations ranging from 0 to 40 mg L-1. The EC50 values of diuron and irgarol for the normal embryogenesis rates were 20.07 mg L-1 and 22.45 mg L-1, respectively. The no observed effect concentrations (NOEC) were <1.25 mg L-1 and the lowest observed effect concentrations (LOEC) were 1.25 mg L-1 and 2.5 mg L-1, respectively. From these results, concentrations of diuron and irgarol over 1.25 mg L-1 and 2.5 mg L-1, respectively, can be considered to have toxic effects on invertebrates, including M. nudus. The ecotoxicological bioassay in this study using the noted fertilization and normal embryogenesis rates of M. nudus can be used as baseline data for the continued establishment of environmental quality standards for the effects of antifouling agents(especially diuron and irgarol) in a marine environment.

둥근성게(Mesocentrotus nudus)의 수정 및 배아 발생률을 이용하여 신방오도료 2종(Diuron, Irgarol)의 독성영향을 조사하였다. Diuron과 Irgarol이 시험생물에게 미치는 독성영향을 살펴보기 위해, 시험농도 1.25, 2.50, 5.00, 10.00, 20.00 및 40.00 mg L-1를 조성하였다. M. nudus으로부터 정자와 난자를 얻기 위하여 체강에 0.5M KCl 1mL를 주입하여, 수컷에서는 흰색이나 크림색 정자를, 암컷에서는 노란색이나 주황색 난자를 획득하였다. 획득 후, 30분 이내에 충분히 세척한 뒤 시험에 사용하여, 수정률의 경우는 10분, 정상배아 발생률은 48시간 동안 노출하였다. Diuron과 Irgarol은 수정률에는 영향을 미치지 않았으나, 정상배아 발생률은 농도 의존적으로 감소하였다(EC50=21.62 mg L-1, 95% CI=18.95~24.29 mg L-1) and irgarol (EC50=22.45 mg L-1, 95% CI =22.15~22.75 mg L-1). 또한, Diuron과 Irgarol에 노출된 정상배아 발생률의 NOEC는 <1.25 mg L-1였으며, LOEC는 각각 1.25, 2.5 mg L-1를 나타냈다. Diuron과 Irgarol은 해양생태계 내에서 1.25, 2.5 mg L-1 이상의 농도가 나타날 시, M. nudus를 포함한 무척추동물에 독성영향을 미치는 것으로 사료된다. 본 연구를 통하여 도출된 결과와 독성값(NOEC, LOEC 및 EC50)은 해양생태계 내에서 Diuron과 Irgarol 같은 신방오도료의 해양환경 기준농도를 설정하는 귀중한 자료로 활용될 것이다.

Keywords

References

  1. Alzieu C. 2000. Environmental impact of TBT: The French experience. Sci. Total Environ. 258:99-102. https://doi.org/10.1016/S0048-9697(00)00510-6
  2. Bao V, K Leung, JW Qiu and M Lam. 2011. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 62:1147-1151. https://doi.org/10.1016/j.marpolbul.2011.02.041
  3. Bennett RF. 1996. Industrial manufacture and applications of Tributyltin compounds. pp. 21-61. In: Tributyltin: Case Study of an Environmental Contaminant, Mora SJ (eds.). Cambridge Univ. Press, Cambridge, UK.
  4. Cho GO. 2011. A study on the long-term variation of the distribution of organotin compounds and imposex in Thais clavigera on the coast of Korea. Chonnam National University. Gwangju, Korea. pp. 47-56.
  5. Cresswell T, JP Richards, GA Glegg and JW Readman. 2006. The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters. Mar. Pollut. Bull. 52:1169-1175. https://doi.org/10.1016/j.marpolbul.2006.01.014
  6. Dafforn KA, JA Lewis and EL Johnston. 2011. Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 62:453-465. https://doi.org/10.1016/j.marpolbul.2011.01.012
  7. Diniz LG, MS Jesus, LA Dominguez, G Fillmann, EM Vieirac and TC Franco. 2014. First appraisal of water contamination by antifouling booster biocide of 3rd generation at Itaqui Harbor (Sao Luiz - Maranhao - Brazil). J. Braz. Chem. Soc. 25:380-388.
  8. Enright C. 1993. Control of fouling in bivalve aquaculture. World Aquac. 24:44-46.
  9. Greenwood PJ. 1983. The influence of an oil dispersant chemserve OSE-DH on the viability of sea urchin gametes. Combined effects of temperature, concentration and exposure time on fertilization. Aquat. Toxicol. 4:15-29. https://doi.org/10.1016/0166-445X(83)90058-9
  10. Guardiola FA, A Cuesta, J Meseguer and MA Esteban. 2012. Risks of using antifouling biocides in aquaculture. Int. J. Mol. Sci. 13:1541-1560. https://doi.org/10.3390/ijms13021541
  11. Han SK. 2012. Distribution of antifouling agent using Headspace Solid Phase Microextraction (HS-SPME) method in southwestern coast of Korea. J. Korean Soc. Mar. Environ. Saf. 18: 85-93. https://doi.org/10.7837/kosomes.2012.18.2.085
  12. Holmes G. 2014. Australia's pesticide environmental risk assessment failure: the case of diuron and sugarcane. Mar. Pollut. Bull. 88:7-13. https://doi.org/10.1016/j.marpolbul.2014.08.007
  13. Hwang UK, CW Lee, SM Lee, KH An and SY Park. 2008. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Strongylocentrotus nudus). J. Environ. Sci. 17:775-781. https://doi.org/10.3321/j.issn:1001-0742.2005.05.014
  14. Hwang UK, DH Kim, HM Ryu, JW Lee, SY Park and SK Han. 2014. Effect of bisphenol A on early embryonic development and the expression of Glutathione S-transferase (GST) in the sea urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 32:234-242. https://doi.org/10.11626/KJEB.2014.32.3.234
  15. Hwang UK, JW Lee, HM Ryu, JC Kang and SK Han. 2015. Effect of phenol on embryo development and expression of metallothionein in the sea urchin Hemicentrotus pulcherrimus. Ocean Sci. J. 50:701-708. https://doi.org/10.1007/s12601-015-0063-8
  16. IMO. 2001. International convention on the control of harmful anti-fouling systems on ships. International Maritime Organization, United Nations. pp. 22-25.
  17. Karlsson J, E Ytreberg and B Eklund. 2010. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environ. Pollut. 158:681-687. https://doi.org/10.1016/j.envpol.2009.10.024
  18. Kim GY and MO Park. 2001. Evaluation of butyltin compounds and its distribution among seawater, sediment and biota from the Kwangyang bay. J. Korean Fish. Soc. 34:291-298.
  19. Kim NS, SH Hong, JG An, KH Shin and WJ Shim, 2015. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. Mar. Pollut. Bull. 95:484-490. https://doi.org/10.1016/j.marpolbul.2015.03.010
  20. Kim NS, WJ Shim, UH Yim, SH Hong, SY Ha, GM Han and KH Shin. 2014. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar. Pollut. Bull. 78:201-208. https://doi.org/10.1016/j.marpolbul.2013.10.043
  21. Kobayashi N. 1980 Comparative sensitivity of various developmental stages of sea urchins to some chemicals. Mar. Biol. 58:163-171. https://doi.org/10.1007/BF00391872
  22. Lee S, J Chung, H Won, D Lee and YW Lee. 2011. Analysis of antifouling agents after regulation of tributyltin compounds in Korea. J. Hazard. Mater. 185:1318-1325. https://doi.org/10.1016/j.jhazmat.2010.10.048
  23. Magnusson M, K Heimann, M Ridd and AP Negri. 2012. Chronic herbicide exposures affect the sensitivity and community structure of tropical benthic microalgae. Mar. Pollut. Bull. 65:363-372. https://doi.org/10.1016/j.marpolbul.2011.09.029
  24. Manzo S, S Buono and C Cremisini. 2006. Toxic effects of irgarol and diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality. Arch. Environ. Contam. Toxicol. 51:61-68. https://doi.org/10.1007/s00244-004-0167-0
  25. Moncada A. 2004. Environmental fate of diuron. Department of Pesticide Regulation Report. Sacramento, CA.
  26. Omae I. 2003. General aspects of tin-free antifouling paints. Chem. Rev. 103:3431-3448. https://doi.org/10.1021/cr030669z
  27. OSPAR. 2010. Assessment of the Impact of Shipping on the Marine Environment. Quality Status Report 2010. OSPAR Commission, London, UK.
  28. Seo JY, JH Kang and JW Choi. 2019. Effects of anti -fouling system (AFS) on embryos of a sea urchin Mesocentrotus nudus. Korean J. Environ. Biol. 37:389-395. https://doi.org/10.11626/KJEB.2019.37.3.389
  29. Voulvoulis N, MD Scrimshaw and JN Lester. 1999. Alternative antifouling biocides. Appl. Organomet. Chem. 13:135. https://doi.org/10.1002/(SICI)1099-0739(199903)13:3<135::AID-AOC831>3.0.CO;2-G
  30. Voulvoulis N, MD Scrimshaw and JN Lester. 2000. Occurrence of four biocides utilized in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar. Pollut. Bull. 40:938-946. https://doi.org/10.1016/S0025-326X(00)00034-5
  31. Wei CL, GT Rowe, E Escobar-Briones, C Nunnally, Y Soliman and N Ellis. 2012. Standing stocks and body size of deep-sea macrofauna: Predicting the baseline of 2010 deepwater horizon oil spill in the Northern Gulf of Mexico. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 69:82-99. https://doi.org/10.1016/j.dsr.2012.07.008
  32. Yamada H. 2007. Behaviour, occurrence, and aquatic toxicity of new antifouling biocides and preliminary assessment of risk to aquatic ecosystems. Bull. Fish Res. Agen. 21:31-45.
  33. Ytreberg E, J Karlsson and B Eklund. 2010. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci. Total Environ. 408:2459-2466. https://doi.org/10.1016/j.scitotenv.2010.02.036