DOI QR코드

DOI QR Code

A comparative study on ammonia emission inventory in livestock manure compost application through a foreign case study

국내외 가축분뇨 퇴액비 이용 분야 암모니아 배출량 인벤토리 비교 연구

  • Kim, Min-Suk (O-Jeong Eco-Resilience Institute, Korea University) ;
  • Koo, Namin (National Institute of Forest Science) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University)
  • 김민석 (고려대학교 오정에코리질리언스연구원) ;
  • 구남인 (국립산림과학원 산림육성복원연구과) ;
  • 김정규 (고려대학교 환경생태공학부)
  • Received : 2019.12.30
  • Accepted : 2020.02.17
  • Published : 2020.03.31

Abstract

In Korea, more than 70% of the ammonia(NH3) released into the atmosphere is known to originate from livestock manure. The total emission (kg year-1) is calculated by multiplying the emission factor (kg head-1 yr-1) and the activity data (head). To improve the accuracy and reliability of the NH3 emission estimation process, an accurate account of livestock manure production, calculation of NH3 conversion and generation during the composting and liquefaction of manure, estimation of NH3 generation in the storage and transportation of manure and compost, and a comparative study of NH3 emission during the soil spreading process must be performed. Compared to the US and EU-28, in particular, the domestic emission factor is relatively even and the spatial/temporal scale is not broken down sufficiently to reflect the domestic situation. As a way to improve the accuracy and expertise of estimating NH3 emission factors, a 'dynamic chamber-capture system' can be utilized, which allows complex considerations of compost, liquid manure, soil, and climate characteristics. By reviewing and comparing the data related to domestic and foreign NH3 emission, we identified shortcomings in the current domestic system and the directions to be taken and suggested a chamber system that could estimate NH3 emission flux. It is also necessary to establish a methodology for mesocosm systems in the field, in addition to indoor chamber systems, to be linked with practical policies, such as the calculation of new emission factors for missing sources.

국내 발생 암모니아 중 가축분뇨의 기여율이 높은 것은 자명한 사실이다. 암모니아 배출량 산정 과정의 정확도와 신뢰도 향상을 위해서는, 가축분뇨 발생량의 정확한 집계, 가축분뇨의 퇴비화 및 액비화 과정에서 단계별 암모니아 전환량과 발생량 산출, 퇴액비의 저장 및 운송과정에서의 암모니아 발생량 산정 그리고 토양 살포 과정과 방법에 따른 암모니아 발생량 비교 연구가 반드시 수행되어야 할 것이다. 미국과 유럽과 비교해 볼 때, 특히 국내 배출계수가 상대적으로 매우 획일적이고 시공간적으로 세분화되지 못해 국내 실정을 충분히 반영하지 못하고 있다. 암모니아 배출계수 산정의 정확도와 전문성을 향상 시킬 수 있는 방안으로, 퇴액비의 특성, 토양의 특성 그리고 기후 특성의 복합적인 고려가 가능한 챔버시스템을 활용할 수 있을 것이다. 국내외 암모니아 배출과 관련한 자료의 검토와 비교를 통해 현재 국내 시스템의 부족한 점과 나아가야할 방향을 확인할 수 있었으며, 암모니아 배출유량 산정이 가능한 챔버 시스템을 제언하였다. 향후 누락배출원의 신규 배출계수 산정과 같은 실질적인 정책과의 연계를 위해서는 실내의 챔버 시스템에서 더 나아가 현장에서의 mesocosom 시스템의 방법론 구축 또한 필요할 것으로 판단된다.

Keywords

References

  1. Ahn JH, IH Song and MS Kang. 2013. Correlation between raw materials and chemical contents of livestock compost. J. Korean Soc. Agric. Eng. 55:37-45.
  2. Behera SN, M Sharma, VP Aneja and R Balasubramanian. 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 20:8092-8131. https://doi.org/10.1007/s11356-013-2051-9
  3. Eghball B. 2000. Nitrogen mineralization from field applied beef cattle feedlot manure or compost. Soil Sci. Soc. Am. J. 64:2024-2030. https://doi.org/10.2136/sssaj2000.6462024x
  4. EEA. 2007. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2007. European Environment Agency. Copenhagen, Denmark.
  5. EEA. 2016. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. European Environment Agency. Copenhagen, Denmark.
  6. EPA. 1994. Development and Selection of Ammonia Emission Factors (final report). Environmental Protection Agency. Washington, D.C., USA.
  7. EPA. 2016. 2014 National Emissions Inventory, Version 1. Environmental Protection Agency. Washington, D.C., USA.
  8. Hodan WB and WR Barnard. 2004. Evaluating the contribution of $PM_{2.5}$ precursor gases and re-entrained road emissions to mobile source $PM_{2.5}$ particulate matter emissions. MACTEC Federal Programs, Research Triangle Park, NC.
  9. Hristov AN. 2011. Contribution of ammonia emitted from livestock to atmospheric fine particulate matter ($PM_{2.5}$) in the United States. J. Dairy Sci. 94:3130-3136. https://doi.org/10.3168/jds.2010-3681
  10. Hwang OH, SK Park, MW Jung, DW Han, WG Nho and SB Cho. 2018. Effects of pH modulation on the concentrations of odorous compounds from pit slurry of a pig operation building. J. Odor Indoor Environ. 17:1-10. https://doi.org/10.15250/joie.2018.17.1.1
  11. Hyun J, SY Yoo, XY Yang, JE Lee and GY Yoo. 2017. Annual variability in nitrous oxide emission from agricultural field soils. J. Climate Chang. Res. 8:305-312. https://doi.org/10.15531/ksccr.2017.8.4.305
  12. Jeon EC, JH Sa and JH Park. 2005. Development of NH3 emission factors using a dynamic flux chamber in a sewage treatment plant. J. Environ. Impact Assess. 14:263-273.
  13. Jeong YG and JS Kim. 2000. An assessment on the behavior of nitrogenous materials during the first high rate phase in composting process. J. Kor. Org. Resour. Recyc. Assoc. 8:81-88.
  14. Kang TW, JN Halder, SR Kim, YM Yoon and MG Lee. 2017. Nutrient composition and heavy metal contents of matured livestock liquid fertilizer in Korea. J. Kor. Org. Resour. Recyc. Assoc. 25:31-39. https://doi.org/10.17137/KORRAE.2017.25.4.31
  15. Kim DH. 2017. Improving livestock environment for sustainable livestock production. World Agric. 204:1-19.
  16. Kim CG and TY Kim. 2006. Scheme for implementing regionally based maximum nutrients loading system. Korean J. Agric. Manage. Policy 33:326-350.
  17. Kim MS, WK Oh and DH Kwak. 2017. Behavior characteristics analysis of animal liquid manure and urea in the rice field using an fugacity-based multimedia environmental fate model. J. Kor. Soc. Environ. Technol. 18:546-562. https://doi.org/10.26511/jkset.18.6.5
  18. Kim MS, YS Lee, HG Min and JG Kim. 2020. Applicability of the dynamic chamber-capture system (DCS) for estimating the flux of ammonia emission during liquid fertilizer spreading. Atmos. Pollut. Res. In press. DOI:10.1016/j.apr.2020.01.001.
  19. Kim TY, AR Daquiado, F Alam and YB Lee. 2012. Effect of application ratge of hairy vetch on ammonia emission from paddy soil. Korean J. Environ. Agric. 31:375-377. https://doi.org/10.5338/KJEA.2012.31.4.375
  20. Lee JH and YM Yoon. 2019. Comparison of nutrient balance and nutrient loading index for cultivated land nutrient management. Korean J. Environ. Biol. 37:554-567. https://doi.org/10.11626/KJEB.2019.37.4.554
  21. MAFRA. 2018. Agriculture, Food and Rural Affairs Statistic Yearbook. Ministry of Agriculture, Food and Rural Affairs. Sejong, Korea.
  22. ME. 2018. White Paper of Environment 2018. Ministry of Environment. Sejong, Korea.
  23. NIER. 2008. National Air Pollutant Emission Estimation Manual (III). National Institute of Environmental Research. Incheon, Korea.
  24. Nyord T, KM Schelde, HT Sogaard, LS Jensen and SG Sommer. 2008. A simple model for assessing ammonia emission from ammoniacal fertilisers as affected by pH and injection into soil. Atmos. Environ. 42:4656-4664. https://doi.org/10.1016/j.atmosenv.2008.01.051
  25. Sa JH and EC Jeon. 2010. Estimation of ammonia flux and emission factor from cattle housing using dynamic flux chamber. J. Environ. Health Sci. 36:33-43.
  26. Shim HY, KS Lee, DS Lee, DS Jeon, MS Park, JS Shin, YK Lee, JW Goo, SB Kim, SG Song and DY Chung. 2014. Infiltration rates of liquid pig manure with various dilution ratios in three different soil. Korean J. Environ. Agric. 33:164-168. https://doi.org/10.5338/KJEA.2014.33.3.164
  27. Shin DW, HS Joo, E Seo and CY Kim. 2017. Management Strategies to Reduce PM-2.5 Emission: Emphasis-Ammonia. Korea Environment Institute. Sejong, Korea.
  28. Sommer SG, JE Olesen and BT Christensen. 1991. Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. J. Agric. Sci. 117:91-100. https://doi.org/10.1017/S0021859600079016
  29. Sommer SG and NJ Hutchings. 2001. Ammonia emission from field applied manure and its reduction invited paper. Eur. J. Agron. 15:1-15. https://doi.org/10.1016/S1161-0301(01)00112-5
  30. Sommer SG, S Genermont, P Cellier, NJ Hutchings, JE Oleson and T Morvan. 2003. Processes controlling ammonia emission from livestock slurry in the field. Eur. J. Agron. 19:465-486. https://doi.org/10.1016/S1161-0301(03)00037-6
  31. Sung KI, BW Kim and CW Chung. 2000. Development trend in sustainable and low input system for livestock production. Ann. Ani. Resour. Sci. 11:188-194.
  32. Yoon YM, SE Lee, DY Chung, GY Cho, JD Kim and CH Kim. 2008. The analysis of environmental loads and material recycling of the nutrients by the livestock wastewater originating from imported feeds. J. Korean Soc. Grassl. Forage Sci. 28:139-154. https://doi.org/10.5333/KGFS.2008.28.2.139