DOI QR코드

DOI QR Code

A brief review of the bilayer electrolyte strategy to achieve high performance solid oxide fuel cells

고성능 고체산화물 연료전지를 위한 이중층 전해질 전략

  • Park, Jeong Hwa (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Doyeub (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Kyeong Joon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Bae, Kyung Taek (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lee, Kang Taek (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 박정화 (대구경북과학기술원 에너지공학전공) ;
  • 김도엽 (대구경북과학기술원 에너지공학전공) ;
  • 김경준 (대구경북과학기술원 에너지공학전공) ;
  • 배경택 (대구경북과학기술원 에너지공학전공) ;
  • 이강택 (한국과학기술원 기계공학과)
  • Received : 2020.05.05
  • Accepted : 2020.06.02
  • Published : 2020.06.30

Abstract

The solid oxide fuel cells (SOFCs) are the one of the most promising energy conversion devices which can directly convert chemical energy into electric power with high efficiency and low emission. The lowering operating temperature below 800 ℃ has been considered as the mostly considerable research and development for commercialization. The major issue is to maintain reasonably high performance of SOFCs at reduced temperatures due to increment of polarization resistance of electrodes and electrolyte. Thus, the alternative materials with high catalytic activities and fast oxygen ion conductivity are required. For recent advances in electrolyte materials and technology, newly designed, highly conductive electrolyte materials and structural engineering of them provide a new path for further reduction in ohmic polarization resistance from electrolytes. Here, a powerful strategy of the bilayer concept with various oxide electrolytes of SOFCs are briefly reviewed. These recent developments also highlight the need for electrolytes with greater conductivity to achieve a high performance, thus providing a useful guidance for the rational design of cell structures for SOFCs. Moreover, cell design, materials compatibility, processing methods, are discussed, along with their role in determining cell performance. Results from state-of-the-art SOFCs are presented, and future prospects are discussed.

Keywords

References

  1. E. D. Wachsman, K. T. Lee, "Lowering the temperature of solid oxide fuel cells", Science, 334 [6058] 935-939 (2011). https://doi.org/10.1126/science.1204090
  2. S.-H. Choe, W.-S. Park, "고체산화물 연료전지 (SOFC) 핵심 소재 및 단전지 연구개발", Ceramist, 13 [4] 21-14 (2010).
  3. H.-Y. Lee, B.-K. Kang, H.-C. Lee, Y.-W. Heo, J.-J. Kim, J.-H. Lee, "Effects of Co-doping on Densification of Gd-doped $CeO_2$ Ceramics and Adhesion Characteristics on a Yttrium Stabilized Zirconia Substrate", J. Korean Ceram. Soc., 55[6] 576-580 (2018). https://doi.org/10.4191/kcers.2018.55.6.05
  4. H.-W. Lee, H.-I. Ji, J.-H. Lee, B.-K. Kim, K. J. Yoon, J.-W. Son, "Powder Packing Behavior and Constrained Sintering in Powder Processing of Solid Oxide Fuel Cells (SOFCs)", J. Korean Ceram. Soc., 56 [2] 130-145 (2019). https://doi.org/10.4191/kcers.2019.56.2.04
  5. K. T. Lee, H. S. Yoon, E. D. Wachsman, "The evolution of low temperature solid oxide fuel cells", J. Mater. Res., 27 [16], 2063-2078 (2012). https://doi.org/10.1557/jmr.2012.194
  6. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, "Progress in material selection for solid oxide fuel cell technology: A review", Prog. Mater. Sci., 72 141-337 (2015). https://doi.org/10.1016/j.pmatsci.2015.01.001
  7. D. W. Joh, J. H. Park, D. Y. Kim, B.-H. Yun, K. T. Lee, "High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells", J. Power Sources, 320 267-273 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.090
  8. B.-H. Yun, C.-W. Lee, I. Jeong, K. T. Lee, "Dramatic enhancement of long-term stability of erbia-stabilized bismuth oxides via quadrivalent Hf doping" Chem. Mater., 29 10289-10293 (2017). https://doi.org/10.1021/acs.chemmater.7b03894
  9. B.-H. Yun, K. J. Kim, D. W. Joh, M. S. Chae, J. J. Lee, D.-W. Kim, S. Kang, D. Choi, S.-T. Hong, K. T. Lee, "Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures", J. Mater. Chem., A 7 20558-20566 (2019). https://doi.org/10.1039/C9TA09203J
  10. A. Chroneos, B. Yildiz, A. Tarancon, D. Parfitt, J. A. Kilner, "Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations", Energy Environ. Sci., 4 2774-2789 (2011). https://doi.org/10.1039/c0ee00717j
  11. J.-H. Kim, "SOFC의 전해질 종류와 특성", Ceramist, 3 [5], 34-40 (2000).
  12. N. Q. Minh, "Ceramic fuel cells", J. Am. Ceram. Soc., 76 [3], 563-588 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  13. J. W. Fergus, "Electrolytes for solid oxide fuel cells", J. Power Sources, 162 30-40 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.062
  14. D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov, B. Johansson, "Optimization of ionic conductivity in doped ceria", PNAS, 103[10], 3518-3521 (2006). https://doi.org/10.1073/pnas.0509537103
  15. S. Omar, E. D. Wachsman, J. C. Nino, "Higher conductivity $Sm^{3+}$ and $Nd^{3+}$ co-doped ceriabased electrolyte materials", Solid State Ionics, 178 1890-1987 (2008). https://doi.org/10.1016/j.ssi.2007.12.069
  16. A. Pesaran, A. Jaiswal, E. D. Wachsman, "Bilayer Electrolytes for Low Temperature and Intermediate Temperature Solid Oxide Fuel Cells-A Review", Energy Storage and Conversion Materials, The Royal Society of Chemistry (2019).
  17. S. boyapati, E. D. Wachsman, N. Jiang, "Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phasestabilized cubic bismuth oxides", Solid State Ionics, 140 149-160 (2001). https://doi.org/10.1016/s0167-2738(01)00698-1
  18. H. A. Harwig, A.G.Gerards, "Electrical properties of the ${\alpha}$, ${\beta}$, ${\gamma}$, and ${\delta}$ phases of bismuth sesquioxide", J. Solid State Chem., 26 265-274 (1978). https://doi.org/10.1016/0022-4596(78)90161-5
  19. M. J. Verkerk, K. Keizer, A. J. Burggraaf, "High oxygen ion conduction in sintered oxides of the $Bi_2O_3$-$Er_2O_3$ system", J. Appl. Electrochem., 10 81-90 (1980). https://doi.org/10.1007/BF00937342
  20. T. Takahashi, H. Iwahara, T. Arao, "High oxide ion conduction in sintered oxides of the system $Bi_2O_3-Y_2O_3$", J. Appl. Electrochem., 5 187-195 (1975). https://doi.org/10.1007/BF01637268
  21. M. J. Verkerk, A.J. Burggraaf, "High Oxygen Ion Conduction in Sintered Oxides of the $Bi_2O_3-Dy_2O_3$ System", J. Electrochem. Soc., 128 75-82 (1981). https://doi.org/10.1149/1.2127391
  22. P.-N. Huang, A. Petric, "Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium", J. Electrochem. Soc., 143 [5], 1644-1647 (1996). https://doi.org/10.1149/1.1836692
  23. H. Yahiro, Y. Baba, K. Eguchi. H. Arai, "High Temperature fuel cell with ceria-yttria solid electrolyte", J. Electrochem. Soc., 135 2077-2080 (1988). https://doi.org/10.1149/1.2096212
  24. F. M. B. Marques, L. M. Navarro, "Performance of double layer electrolyte cells Part II: GCO/YSZ, a case study", Solid State Ionics, 100 29-38 (1997). https://doi.org/10.1016/S0167-2738(97)00261-0
  25. A. V. Virkar, "Theoretical Analysis of Solid Oxide Fuel Cells with Two-Layer, Composite Electrolytes: Electrolyte Stability", J. Electrochem. Soc., 138 1481-1487 (1991). https://doi.org/10.1149/1.2085811
  26. T.-H. Kwon, T. Lee, H.-I. Yoo, "Partial electronic conductivity and electrolytic domain of bilayer electrolyte $Zr_{0.84}Y_{0.16}O_{1.92}/Ce_{0.9}Gd_{0.1}O_{1.95}$", Solid State Ionics, 195 25-35 (2011). https://doi.org/10.1016/j.ssi.2011.05.002
  27. D.-H. Myung, J. Hong, K. Yoon, B.-K. Kim, H.-W. Lee, J.-H. Lee, J.-W. Son, "The effect of an ultra-thin zirconia blocking layer on the performance of a 1-${\mu}m$-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell", J. Power Sources 206 91-96 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.117
  28. Z. Gao, V. Y. Zenou, D. Kennouche, L. Marks, S. A. Barnett, "Solid oxide cells with zirconia/ceria Bi-Layer electrolytes fabricated by reduced temperature firing", J. Mater. Chem. A, 3 9955-9964 (2015). https://doi.org/10.1039/C5TA01964H
  29. A. Infortuna, A. S. Harvey, L. J. Gauckler, "Microstructures of CGO and YSZ thin films by pulsed laser deposition", Adv. Funct. Mater., 18 127-135 (2008). https://doi.org/10.1002/adfm.200700136
  30. E.-O. Oh, C.-M. Whang, Y.-R. Lee, S.-Y. Park, D. H. Prasad, K. J. Yoon, J.-W. Son, J.-H. Lee, H. W. Lee, "Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD)", Adv. Mater. 24 3373-3377 (2012). https://doi.org/10.1002/adma.201200505
  31. I. Jang, S. Kim, C. Kim, H. Lee, H. Yoon, T. Song, U. Paik, "Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance", J. Power Sources, 435 226776-226784 (2019). https://doi.org/10.1016/j.jpowsour.2019.226776
  32. C. Nicollet, J. Waxin, T. Dupeyron, A. Flura, J.-M. Heintz, J. P. Ouweltjes, P. Piccardo, A. Rougier, J.-C. Grenier, J.-M. Bassat, "Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: Enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration", J. Power Sources, 372 157-165 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.064
  33. S. Lee, S. Lee, H.-J. Kim, S. M. Choi, H. An, M. Y. Park, J. Shin, J. H. Park, J. Ahn, D. Kim, H.-I. Ji, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-W. Lee, J. Hong, D. Shin, K. J. Yoon, "Highly durable solid oxide fuel cells: suppressing chemical degradation via rational design of a diffusion-blocking layer", J. Mater. Chem. A, 6 15083-15094 (2018). https://doi.org/10.1039/c8ta04974b
  34. C. Kim, S. Kim, I. Jang, H. Yoon, T. Song, U. Paik, "Facile fabrication strategy of highly dense gadolinium-doped ceria/yttriastabilized zirconia bilayer electrolyte via cold isostatic pressing for low temperature solid oxide fuel cells", J. Power Sources, 415 112-118 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.057
  35. K. T. Lee, D. W. Jung, M. A. Camaratta, H. S. Yoon, J. S. Ahn, E. D. Wachsman, "$Gd_{0.1}Ce_{0.9}O_{1.95}/Er_{0.4}Bi_{1.6}O_3$ bilayered electrolytes fabricated by a simple colloidal route using nano-sized $Er_{0.4}Bi_{1.6}O_3$ powders for high performance low temperature solid oxide fuel cells", J. Power Sources, 205 122-128 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.040
  36. J. S. Ahn, D. Pergolesi, M. A. Camaratta, H. Yoon, B. W. Lee, K. T. Lee, D. W. Jung, E. Traversa, E. D. Wachsman, "Highperformance bilayered electrolyte intermediate temperature solid oxide fuel cells", Electrochem. Commun., 11 1504-1507 (2009). https://doi.org/10.1016/j.elecom.2009.05.041
  37. D. W. Joh, J. H. Park, D. Kim, E. D. Wachsman, K. T. Lee, "Functionally Graded Bismuth Oxide/Zirconia Bilayer Electrolytes for High-Performance Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs)", ACS Appl. Mater. Interfaces, 9 8443-8449 (2017). https://doi.org/10.1021/acsami.6b16660
  38. K. - N. Kim, J. Moon, J. - W. Son, J. Kim, H.-W. Lee, J.-H. Lee, B.-K. Kim, "Introduction of a Buffering Layer for the Interfacial Stability of LSGM-Based SOFCs", J. Korean Ceram. Soc., 42 637-644 (2005). https://doi.org/10.4191/KCERS.2005.42.9.637
  39. K.-N. Kim, J. Moon, H. Kim, J.-W. Son, J. Kim, H.-W. Lee, J.-H. Lee, B.-K. Kim, "Effect of Interfacial Reaction Layer on the Electrochemical Performance of LSGM-Based SOFCs", J. Korean Ceram. Soc., 42 665-671 (2005). https://doi.org/10.4191/KCERS.2005.42.10.665
  40. K. Huang, J.-H. Wan, J. B. Goodenough, "Increasing power density of LSGM-based solid oxide fuel cells using new anode materials", J. Electrochem. Soc., 148 [7], A788-A794 (2001). https://doi.org/10.1149/1.1378289
  41. K.-J. Kim, S.-W. Choi, M.-Y. Kim, M.-S. Lee, Y.-S. Kim, H.-S. Kim, "Fabrication characteristics of SOFC single cell with thin LSGM electrolyte via tape-casting and co-sintering", J. Ind. Eng. Chem., 42 69-74 (2016). https://doi.org/10.1016/j.jiec.2016.07.041
  42. E. H. Song, T. J. Chung, H.-R. Kim, J.-W. Son, B. K. Kim, J.-H. Lee, H.-W. Lee, "Effect of the LDC Buffer Layer in LSGMbased Anode-supported SOFCs", J. Korean Ceram. Soc., 44 710-714 (2007). https://doi.org/10.4191/KCERS.2007.44.1.710
  43. J. Bi, B. Yi, Z. Wang, Y. Dong, H. Wu, Y. She, M. Cheng, "A high-performance anodesupported SOFC with LDC-LSGM bilayer electrolytes", Electrochem. Solid-State Lett., 7[5], A105-A107 (2004). https://doi.org/10.1149/1.1667016
  44. J. Bi, Y. Dong, M. Cheng, B. Yi, "Behavior of lanthanum-doped ceria and Sr-, Mg-doped $LaGaO_3$ electrolytes in an anode-supported solid oxide fuel cell with a $La_{0.6}Sr_{0.4}CoO_3$ cathode", J. Power Sources, 161 34-39 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.065