DOI QR코드

DOI QR Code

The study of optimal reduced-graphene oxide line patterning by using femtosecond laser pulse

펨토초 레이저 펄스를 이용한 환원된 그래핀의 최소 선폭 패턴 구현에 관한 연구

  • Jeong, Tae-In (Dept. of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Seung-Chul (Dept. of Optics and Mechatronics Engineering, Dept. of Cogno-Mechatronics Engineering, Pusan National University)
  • 정태인 (부산대학교 인지메카트로닉스공학과) ;
  • 김승철 (부산대학교 광메카트로닉스공학과, 인지메카트로닉스공학과)
  • Received : 2020.05.07
  • Accepted : 2020.07.20
  • Published : 2020.07.28

Abstract

In recent years, laser induced graphene process have been intensively studied for eco-friendly electronic device such as flexible electronics or thin film based energy storage devices because of its simple and effective process. In order to increase the performance and efficiency of an electronic device using such a graphene patterned structure, it is essential to study an optimized laser patterning condition as small as possible linewidth while maintaining the graphene-specific 2-dimensional characteristics. In this study, we analyzed to find the optimal line pattern by using a Ti:sapphire femtosecond laser based photo-thermal reduction process. we tuned intensity and scanning speed of laser spot for generating effective graphene characteristic and minimum thermal effect. As a result, we demonstrated the reduced graphene pattern of 30㎛ in linewidth by using a focused laser beam of 18㎛ in diameter.

최근 레이저를 이용하여 환원된 친환경 그래핀 패턴 기술(Laser Induced Graphene, LIG)은 간단하고 효율적으로 원하는 형태로 다양한 기판 위에 패터닝하는 것이 가능하여 신축 유연 전자 소자, 박막 형태의 에너지 저장 소자 등과 같이 새로운 친환경 전자 소자 제작에 많이 활용되고 있다. 이러한 그래핀 패턴 구조를 이용한 전자 소자의 성능과 효용성을 높이기 위해서는 그래핀 고유의 2차원 특성을 유지하면서 가능한 최소한의 선폭을 구현할 수 있는 최적화된 레이저 패터닝 조건에 대한 연구가 필수적이다. 본 논문에서는 최근 레이저 그래핀 패턴 연구에서 많이 사용되는 Ti:sapphire 펨토초 레이저를 이용해서 그래핀 광-열 산화반응을 분석하여 최적화된 그래핀의 최소선폭을 구현하였다. 레이저 에너지의 확산 효과를 최소화하기 위하여 레이저 광강도와 레이저 스캔 속도를 조절하여 최적의 그래핀 특성을 나타내는 패턴을 연구하였으며 18 ㎛의 집속된 빔을 이용하여 최소 30 ㎛의 이차원 그래핀 선폭을 구현하였다.

Keywords

References

  1. Zaaba, N. I., Foo, K. L., Hashim, U., Tan, S. J., Liu, W. W. & Voon, C. H. (2017). Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia engineering, 184, 469-477. https://doi.org/10.1016/j.proeng.2017.04.118
  2. Trusovas, R., Raciukaitis, G., Niaura, G., Barkauskas, J., Valusis, G. & Pauliukaite, R. (2016). Recent advances in laser utilization in the chemical modification of graphene oxide and its applications. Advanced Optical Materials, 4(1), 37-65. https://doi.org/10.1002/adom.201500469
  3. Huang, L., Liu, Y., Ji, L. C., Xie, Y. Q., Wang, T. & Shi, W. Z. (2011). Pulsed laser assisted reduction of graphene oxide. Carbon, 49(7), 2431-2436. https://doi.org/10.1016/j.carbon.2011.01.067
  4. Wang, F. et al. (2018). Laser-induced graphene: preparation, functionalization and applications. Materials technology, 33(5), 340-356. https://doi.org/10.1080/10667857.2018.1447265
  5. Park, S., Lee, H., Kim, Y. J. & Lee, P. S. (2018). Fully laser-patterned stretchable microsupercapacitors integrated with soft electronic circuit components. NPG Asia Materials, 10(10), 959-969. https://doi.org/10.1038/s41427-018-0080-z
  6. An, J. et al. (2018). Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Advanced Science, 5(8), 1800496. https://doi.org/10.1002/advs.201800496
  7. You, R., Liu, Y. Q., Hao, Y. L., Han, D. D., Zhang, Y. L. & You, Z. (2020). Laser fabrication of graphenebased flexible electronics. Advanced Materials, 32(15), 1901981. https://doi.org/10.1002/adma.201901981
  8. Liu, Y. Q., Chen, Z. D., Mao, J. W., Han, D. D. & Sun, X. (2019). Laser fabrication of graphene-based electronic skin. Frontiers in chemistry, 7, 461. https://doi.org/10.3389/fchem.2019.00461
  9. Yu, C., An, J., Chen, Q., Zhou, J., Huang, W., Kim, Y. J, & Sun, G. (2020). Recent Advances in Design of Flexible Electrodes for Miniaturized Supercapacitors. Small Methods, 1900824.
  10. Das, C. M., Kang, L., Ouyang, Q. & Yong, K. T. (2020). Advanced low-dimensional carbon materials for flexible devices. InfoMat, 2(4), 698-714. https://doi.org/10.1002/inf2.12073
  11. Li, L., Zhang et al. (2016). High-performance pseudocapacitive microsupercapacitors from laserinduced graphene. Advanced Materials, 28(5), 838-845. https://doi.org/10.1002/adma.201503333
  12. Kumar, R., Joanni, E., Singh, R. K., da Silva, E. T., Savu, R., Kubota, L. T. & Moshkalev, S. A. (2017). Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. Journal of colloid and interface science, 507, 271-278. https://doi.org/10.1016/j.jcis.2017.08.005
  13. Wan, Z. et al. (2019). Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser. Carbon, 141, 83-91. https://doi.org/10.1016/j.carbon.2018.09.030
  14. Trusovas, R., Ratautas, K., Raciukaitis, G., Barkauskas, J., Stankeviciene, I., Niaura, G. & Mazeikiene, R. (2013). Reduction of graphite oxide to graphene with laser irradiation. Carbon, 52, 574-582. https://doi.org/10.1016/j.carbon.2012.10.017
  15. Cancado, L. G. et al. (2006). General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Applied Physics Letters, 88(16), 163106. https://doi.org/10.1063/1.2196057