DOI QR코드

DOI QR Code

A Study on the Change of Burning Rate of Zirconium-Nickel Delay Elements Depending on the Ambient Temperature

Zr/Ni계 지연제의 주변 온도에 따른 연소속도 변화 연구

  • Received : 2020.05.26
  • Accepted : 2020.07.03
  • Published : 2020.07.31

Abstract

Among the explosives in ammunition, the delay elements, which are used as a retardant, could be influenced by the ambient temperature in the Republic of Korea, where the highest and lowest average annual temperature difference is clear. On the other hand, there has been no domestic research on this. This study examined the linear burning rates of the zirconium-nickel delay elements depending on the ambient temperature in South Korea. The ambient temperature data of South Korea were obtained from the meteorological administration, which was used to set the experimental conditions. The operational time for the K414 fuze was measured by changing the ambient temperature by 10 ℃ from -40 ℃ to 50 ℃. To convert the delay time into the burning rates, the height of the delay element in the K414 fuze body was used. The results indicated that the characteristics of the burning rates for the zirconium-nickel delay element could be estimated as linear, and both the burning rates and the delay time of the zirconium-nickel delay element were 2.73mm/ms and -4.18ms, respectively. This led to an approximately 80 ms delay time difference in the environment where the highest and lowest average annual temperature difference was above 20 ℃. Therefore, the delay time reflecting the ambient temperature should be considered when the test evaluation criteria of zirconium-nickel delay elements are established.

탄약내의 화약류 특히, 지연제의 지연시간에 대한 온도의 영향은 우리나라와 같이 연평균 최고최저 온도차가 뚜렷한 환경에서 충분히 존재할 수 있음에도 불구하고 이와 관련한 연구는 아직까지 국내에 보고된 바가 없다. 이에 본 연구는 우리나라 탄약류에 주로 사용되는 Zr/Ni계 지연제에 대해 주변 온도에 따른 연소속도 변화를 실험적으로 확인하였다. 이를 위해, K413 수류탄용 K414 신관에 Zr/Ni계 지연제를 충전하고 우리나라 기상환경을 고려한 주변 온도구간(-40 ℃ ~ 50 ℃)에서 온도변화에 따른 K414 신관의 지연시간 변화를 확인 및 분석하였다. K414 신관의 지연시간은 상기 시험 온도구간 내에서 시험온도를 10 ℃ 씩 변화시켜가며 측정하였고, 측정된 지연시간은 Zr/Ni계 지연제 충전 시에 기록한 지연제의 높이를 이용하여 연소속도로 환산되었다. 시험결과, Zr/Ni계 지연제의 지연시간은 주변 온도가 증가함에 따라 선형적으로 감소하는 경향이 있으며, Zr/Ni계 지연제 온도가 1 ℃ 상승할 때 마다 지연시간이 4.18 ms 감소하고, 연소속도는 2.73 mm/ms 로 빨라진 것으로 분석되었다. 즉, 연평균 최고최저 온도차이가 20 ℃ 이상인 주변 온도 환경에서는 약 80 ms 의 지연시간 차이가 발생하므로, Zr/Ni계 지연제의 시험평가 기준수립 시, 지연제가 노출된 주변 온도 조건을 반영한 지연시간이 고려되어야 할 것으로 사료된다.

Keywords

References

  1. W. W. Focke, S. M. Tichapondwa, Y. C. Montgomery, J. M. Grobler, M. L. Kalombo, "Review of Gasless Pyrotechnic Time Delays", Propellants Explos. Pyrotech., Vol. 44, pp.55-93, 2019. DOI: https://doi.org/10.1002/prep.201700311
  2. S. M. Danali, R. S. Palaiah, K. C. Raha, "Developments in Pyrotechnics", Defence Science Journal, Vol.60, No.2, pp.152-158, 2010. DOI: https://doi.org/10.14429/dsj.60.333
  3. B. -C. Park., I. -H. Chang., S. -J. Back, Y. -K. Son. E. -J. Jung, T. -S. Hwang, "Storage Lifetime Prediction of Zr-Ni Delay System in Fuze K510 for High Explosive Shell", Journal of the Korea Institute of Military Science and Technology, Vol.12, No.6, pp. 719-726, Dec. 2009.
  4. B. C. Park. I. H. Chang, S. T. Kim, T. S. Hwang, S. Lee, "A Study on change in thermal properties and chemical structure of Zr-Ni delay system by aging." Analytical Science & Technology, Vol.22, No.4, pp.285-292, 2009.
  5. S. M. Tichapondwa, W. W. Focke, O. D. Fabbro, G. Labuschagne, "The Effect of Additives on the Burning Rate of Silicon-Calcium Sulfate Pyrotechnic Delay Compositions", Propellants Explos. Pyrotech., Vol. 41, pp.732-739, 2016. DOI: https://doi.org/10.1002/prep.201500243
  6. J. P. Agrawal, High Energy Materials : Propellants, Explosives and Pyrotechnics, p.498, WILEY-VCH, 2010, pp.354-358. DOI: https://doi.org/10.1002/9783527628803
  7. R. H. Comyn, Pyrotechnic Research at DOFL : Part 2. Pyrotechnic Delays, Technical Report, DIAMOND ORDNANCE FUZE LABORATORIES, USA, pp.5-30.
  8. J. Jakubko, "Pressure and temperature effects on burning rate of the silicon-red lead system", Journal of Energetic Materials, Vol.15, pp.151-161, 1997. DOI: https://doi.org/10.1080/07370659708216079
  9. Y. Li, Y. Cheng, Y. -L. Hui, S. Yan, "The Effect of Ambient Temperature and Boron Content on the Burning Rate of the $B/Pb_3O_4$ Delay Compositions", Journal of Energetic Materials, Vol.28, pp.77-84, 2010. DOI: https://doi.org/10.1080/07370650903193299
  10. HEADQUARTERS. US ARMY MATERIEL COMMAND, Engineering Design Handbook, Explosives Series : Explosive Trains, p.144, AMC PAMPHLET, 1974, pp.6-1-6-12.
  11. J. Akhavan, The Chemistry of Explosives, p.193, RCS Publishing, 2011, pp.173-174. DOI: https://doi.org/10.1039/9781847552020
  12. J. R. Bentley, P. P. Elischer, DEVELOPMENT OF A GASLESS PYROTECHNIC CAP, Technical Report, DEPARTMENT OF DEFENCE MATERIALS RESEARCH LABORATORIES, Australia, pp.1-8.
  13. H. Ellern, Military and Civilian Pyrotechnics, p.464, Chemical Publishing Company INC., 1968, pp.197-215.
  14. DEPARTMENT OF THE ARMY TECHNICAL MANUAL, MILITARY EXPLOSIVES, Technical Manual, DEPARTMENT OF THE ARMY, USA, pp.10-1-10-13.
  15. B. J., K. L. Kosanke, "Control of Pyrotechnic Burn Rate", Proceedings of the Second International Symposium on Fireworks, Vancouver, BC, Canada, pp.275-288, October 1994.
  16. Y. C. Montgomery, W. W. Focke, C. Kelly, "Measurement and Modelling of Pyrotechnic Time Delay Burning Rates:Application and Prediction of a Fast Burning Delay Composition" Propellants Explos. Pyrotech., Vol. 42, pp.1289-1295, 2017. DOI: https://doi.org/10.1002/prep.201700105
  17. T. M. Klapotke, Chemistry of High-Energy Materials, p.319, DE GRUYTER, 2015, pp.70-97. DOI: https://doi.org/10.1515/9783110439335
  18. J. A. Conkling, C. J. Mocella, Chemistry of Pyrotechnics : Basic Principles and Theory, p.298, CRC Press, 2011, pp.163-168. DOI: https://doi.org/10.1002/prep.201180003
  19. Military Specification, Composition, Delay, MIL-C-13739A, pp.1-11.
  20. V. N. Sheptunov, Heat Generating Compositions for Thermal Batteries, ROYAL AEROSPACE ESTABLISHMENT, UK, pp.3-9.
  21. Y. C. Montgomery, W. W. Focke, C. Kelly, "Measurement and Modelling of Pyrotechnic Time Delay Burning Rates:Method and Model Development", Propellants Explos. Pyrotech., Vol. 42, pp.1161-1167, 2017. DOI: https://doi.org/10.1002/prep.201700107