DOI QR코드

DOI QR Code

A Study of the Performance Improvement for Quilting Fabric via Postprocessing

퀼팅원단 후속가공을 통한 기능성 향상 연구

  • Kim, Ji-Hoon (Combat Material Center, Defense Agency for Technology and Quality) ;
  • Ko, Hye-Ji (Combat Material Center, Defense Agency for Technology and Quality)
  • 김지훈 (국방기술품질원 전투물자센터) ;
  • 고혜지 (국방기술품질원 전투물자센터)
  • Received : 2020.04.20
  • Accepted : 2020.07.03
  • Published : 2020.07.31

Abstract

The fabric used for military winter inner clothing(top) is quilted with padded cotton to provide warmth. This quilting fabric is generally manufactured with yarns that intersect and are sewn substantially between the fabric and cotton. Thus, it is impossible to separate the fabric and cotton once after the quilting fabric is manufactured, which can result in a significant loss of fabric and cotton when separated. In this study, after fabricating the quilting fabric, we investigated a method to stabilize change rate of thickness and increase the warmth keeping property through subsequent processing without damaging the fabric. A relatively method of passing the quilting fabric through a part of the cotton production facility was used generally, and the following results were obtained. This indicates that after the quilting fabric was manufactured, the warmth keeping property was improved through the subsequent processing steps, so that the change rate of thickness due to washing was stabilized.

군용 방한복 상의 내피 원단은 원단과 패드타입 솜을 누빔(퀼팅)하는 형태로 제조되어 보온성을 부여하고 있다. 이렇게 제조된 방한복 내피 원단을 퀼팅원단이라고 하는데, 퀼팅원단은 윗실, 밑실이 각각 교차하여 원단과 솜을 같이 봉제하는 형태로 견고하게 제조되는 것이 일반적이다. 따라서 제조된 퀼팅원단에서 원단과 솜을 분리하는 것은 거의 불가능하며, 이를 분리할 경우 원단 및 솜에 상당한 손실을 가져올 수 있다. 본 연구에서는 퀼팅원단을 제조한 뒤 원단을 손상시키지 않고 후속가공을 통해 보온력을 증대시키고 두께 변화율을 안정화 시키는 방법에 대해서 연구하였다. 일반적인 솜 생산 시설 중 일부 설비를 이용하여 퀼팅원단을 통과시키는 비교적 간단한 방법을 통해 연구를 수행하였고 다음과 같은 결과를 얻을 수 있었다. 보온성의 경우 후속가공하기 전 퀼팅원단에 비해 clo값 기준으로 약 10 %가 상승한 효과가 나타났으며, 세탁 두께 변화율은 후속가공하기 전 퀼팅원단에 비해 약 10 % p. 안정화된 효과를 보여주었다. 이는 퀼팅원단 제작 후에도 후속가공을 통해 보온성을 향상시키고 세탁에 따른 두께 변화율을 안정화 시킬 수 있음을 나타낸다.

Keywords

References

  1. J. H. Kim, "A study of the change for military uniform fabric properties according to multiple washing", Journal of the Korea Academia-Industrial cooperation Society, Vol. 20, No. 10, pp. 366-373, Oct. 2019. DOI: https://doi.org/10.5762/KAIS.20190.10.366
  2. J. Argyris, L. Tenek, and F. Oberg, "A multilayer composite triangular element for steady-state conduction/convection/radiation heat transfer in complex shells", Computer Methods in Applied Mechanics and Engineering, Vol. 120, No. 17 pp. 271-301, April 1994. DOI: http://dx.doi.org/10.1016/0045-7825(94)00775-I
  3. T. Kawasaki and S. Kawai, "Thermal insulation properties of wood-based sandwich panel for use as structural insulated walls and floors", The Japan Wood Research Society, Vol. 52, No. 7, pp. 75-83, Jan. 2006. DOI: https://dx.doi.org/10.1007/s10086-005-0720-0
  4. Y. H. Yeo, S. D. Hong, M. H. Lee, K. P. Kim, and I. H. Chung, "A study on the standard test method for thermal resistance of military textile thermal insulator for winter season", Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 9, pp. 492-500, Sep. 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.9.492
  5. A. Peguri and C Coon, "Effect of feather coverage and temperature on layer performance", Poultry Science, Vol. 72, No. 20, pp. 1318-1329, Feb. 1993. DOI: http://dx.doi.org/10.3382/ps.0721318
  6. T. Rowe, Interior Textiles, p. 284, Woodhead Publishing in Textiles, 2009, pp. 141-147.
  7. Matusiak and Malgorzata "Study of quilted fabrics used in outdoor clothing", Tekstilec, Vol. 60, No. 4, pp. 302-309, Oct. 2017. https://doi.org/10.14502/Tekstilec2017.60.302-309
  8. Korea Standard, KS K 0477, "Test Method for Thermal Resistance of batting Systems using a Hot Plate", Oct. 2015
  9. Korea Standard, KS K ISO 6330:2011, "Textiles - Domestic Washing and Drying Procedures for Textile Testing", Dec. 2011.
  10. Collective Standard, SPS DTAQ T 0014, "Test Method for Determination of Thickness of Quilted Thermal Insulator after Laundry", Dec. 2017.
  11. J. Gao, W. Yu, and N. Pan, "Structures and properties of the goose down as a material for thermal insulation", Textile Research Journal, Vol. 77, No. 8, pp. 617-626, Aug. 2007. DOI: https://dx.doi.org/10.1177/0040517507079408
  12. P. Cui1, F. M. Wang, A. Wei, and K. Zhao, "The performance of kapok/down blended wadding", Textile Research Journal, Vol. 80, No. 6, pp. 516-523, July. 2010. DOI: https://dx.doi.org/10.1177/0040517508097522
  13. Y. Hiroko, S. Sachiko, and F. Takako, "Thickness changes in recycled fiber assemblies made from industrial waste of sweater products after repeated compression", Journal of Textile Engineering, Vol. 53, No. 4, pp. 131-135, July 2007. DOI: http://dx.doi.org/10.4188/jte.53.131
  14. C. W. Kan and Y. L. Lam, "Low stress mechanical properties of plasma-treated cotton fabric subjected to zinc oxide-anti-microbial treatment", Materials, Vol. 6, No. 10, pp. 314-333, Jan. 2013. DOI: https://dx.doi.org/10.3390/ma6010314
  15. B. Kumar, J. Singh, A. Das, and R. Alagirusamy, "Comfort and compressional characteristics of padding bandages", Materials Science and Engineering C, Vol. 57, No. 7, pp. 215-221, July 2015. DOI: http://dx.doi.org/10.1016/j.msec.2015.07.055