DOI QR코드

DOI QR Code

Neuroprotective effects of Extract of Broccoli, Cultivated in Desalinated Magma Seawater, on neuron-like SH-SY5Y cells

제주도 탈염 용암해수 재배로 제조한 브로콜리 추출물의 신경 세포 보호 효과

  • Received : 2020.05.26
  • Accepted : 2020.06.22
  • Published : 2020.06.30

Abstract

Dietary nutrition is a critical lifestyle factor that can reduce the risk of future cognitive impairments caused by dementia. Accumulating evidence suggests that dietary supplementation with Sulforaphane may help the prevention of cognitive impairments and dementia. Thus, Sulforaphane-enriched broccoli extract would hold promise to improve cognitive impairments of dementia patients. Here, we have used broccoli extracts, prepared from broccoli cultivated in Magma Seawater, to test if the broccoli extracts can be dietary supplement to improve cognitive impairments. Magma Seawater originated from Jeju Island, Korea is unique in terms of containing high concentrations of usable minerals (Zinc, Vanadium and Germanium etc.). Broccoli, grown in Magma Seawater, would contain Sulforaphane and the extra amount of usable minerals. The chemical compositions of the broccoli extracts were analyzed using LC-Q-orbitrap to detect Sulforaphane and Glucoraphanin. Analysis method based on HPLC was developed for measurement of sulforaphane levels in the broccoli extracts. We have tested if the broccoli extracts have anti-apoptotic and anti-inflammatory effects on neuron-like SH-SY5Y cells. In addition, we examined if the broccoli extracts are able to upregulate expression of synaptic plasticity-associated proteins (BDNF and phospho-CREB) and to inhibit acetylcholine esterase (AchE) activity. We have shown that the broccoli extracts inhibited the apoptotic pathway and inflammatory responses. Finally, we present evidence showing that AchE activity was inhibited by the broccoli extracts, but expression of BDNF and phospho-CREB was upregulated. Taken together, these findings suggest that the broccoli extracts from Magma Seawater-grown broccoli would be a good source of dietary nutrition to improve cognitive impairments in the future.

식이 영양에 의한 충분한 영양분 섭취는 치매에 의한 뇌 인지 기능의 저하의 위험성을 줄일 수 있는 중요한 수단이다. 설포라판은 뇌 인지 기능 개선효과가 있는 것으로 알려져 있는 영양 성분으로, 설포라판이 다량으로 포함된 브로콜리 추출물은 인지 기능 개선 효과가 좋을 것으로 기대된다. 본 연구에서는 제주도 탈염 용암해수 재배로 제조한 브로콜리 추출물이 뇌 인지 기능 개선 효과를 가지고 있는지 시험하였다. 제주도 용암해수는 유용 미네랄 (아연, 바나듐, 게르마늄)이 풍부해서, 용암 해수에서 재배한 작물은 유용미네랄 함량이 높은 것으로 알려 져 있다. 제주도 탈염 용암 해수를 사용해서 재배한 브로콜리 추출물의 화학 조성 중 설포라판과 글루코라판 성분을 분석하기 위해 LC-Q-orbitrap 질량 분석기를 사용하였고, 설포라판의 정량 분석을 위해 HPLC 를 사용하였다. 브로콜리 추출물의 신경 세포 사멸 억제 효과와 항 염증 효과를 시험하기 위해 SH-SY5Y 세포를 사용한 실험을 수행하였고, 시냅스 가소성 촉진 효과를 시험하기 위해 SH-SY5Y 세포에서 시냅스 가소성 관련 단백질의 발현 변화와 아세틸콜린 분해 효소의 활성 변화를 측정하였다. 이러한 실험들을 수행한 결과 탈염 염지하수로 재배한 브로콜리 추출물은 신경 세포 사멸 억제 효과와 항염증 효과가 있음을 확인 하였고, 시냅스 가소성 관련 단백질 발현을 증가 시키고 아세틸콜린 분해 효소의 활성을 억제해서 시냅스 가소성을 증가 시키는 효과가 있는 것을 확인 하였다. 이상의 결과들은 제주도 탈염 용암해수로 재배한 브로콜리 추출물이 치매에 의한 뇌 인지 기능 저하를 억제하는 좋은 식이 영양분으로 사용될 수 있는 가능성을 제시하였다.

Keywords

References

  1. N. Scarmeas, C. A. Anastasiou, M. Yannakoulia, Nutrition and prevention of cognitive impairment. Lancet Neurol. Vol. 17, pp. 1006-1015, (2018). https://doi.org/10.1016/S1474-4422(18)30338-7
  2. M. G. Iadanza, M. P. Jackson, E. W. Hewitt, N. A. Ranson, S. E. Radford, A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol. Vol. 19, pp. 755-773, (2018). https://doi.org/10.1038/s41580-018-0060-8
  3. X. Q. Chen, W. C. Mobley, Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular. Biology Studies of Oligomeric Ab and Tau Species. Front Neurosci. Vol. 13, p. 659, (2019). https://doi.org/10.3389/fnins.2019.00659
  4. T. T. Hou, H. Y. Yang, W. Wang, Q. Q. Wu, Y. R. Tian, J. P. Jia. Sulforaphane Inhibits the Generation of Amyloid-${\beta}$ Oligomer and Promotes Spatial Learning and Memory in Alzheimer's Disease (PS1V97L) Transgenic Mice. J Alzheimers Dis. Vol. 62, No. 4, pp. 1803-1813, (2018). https://doi.org/10.3233/JAD-171110
  5. J. Zhang, R. Zhang, Z. Zhan, X. Li, F. Zhou, A. Xing, C. Jiang, Y. Chen, Beneficial Effects of Sulforaphane Treatment in Alzheimer's Disease May Be Mediated through Reduced HDAC1/3 and Increased P75NTR Expression. Front Aging Neurosci. Vol. 9, p. 121, (2017). https://doi.org/10.3389/fnagi.2017.00121
  6. J. Kim, S. Lee, B. R. Choi, H. Yang, Y. Hwang, J. H. Park, F. M. LaFerla, J. Han, K. W. Lee, J. Kim, Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB 2 signaling pathways. Mol Nutr Food Res. Vol. 61, No. 2, p. 1600194, (2017). https://doi.org/10.1002/mnfr.201600194
  7. H. Lee, E. Sim, A study on the industrialization of deep seawater in Japan and Korea, and its implications on the utilization of jeju magma seawater. Jpn Cult Stud. Vol. 45, pp. 451-469, (2013).
  8. K. H. Bae, K. J. Kim, N. Y. Kim, J. M. Song. In vitro culture of rare plant Bletilla striata using Jeju magma seawater. J Plant Biotechnol. Vol. 39, pp. 281-287, (2012). https://doi.org/10.5010/JPB.2012.39.4.281
  9. M. D'Amelio, V. Cavallucci, F. Cecconi, Neuronal caspase-3 signaling: not only cell death. Cell Death Differ. Vol. 17, pp. 1104-14, (2010). https://doi.org/10.1038/cdd.2009.180
  10. P. Bai, Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance. Mol Cell. Vol. 58, pp. 947-58, (2015). https://doi.org/10.1016/j.molcel.2015.01.034
  11. J. Pawlowski, A. S. Kraft. Bax-induced apoptotic cell death. Proc Natl Acad Sci U S A. Vol. 97, pp. 529-31, (2000). https://doi.org/10.1073/pnas.97.2.529
  12. A. Chandrasekaran, M. Idelchik, J. A. Melendez, Redox control of senescence and age-related disease. Redox Biol. Vol. 11, pp. 91-102, (2017). https://doi.org/10.1016/j.redox.2016.11.005
  13. F. Sivandzade, S. Prasad, A. Bhalerao, L. Cucullo, NRF2 and NF-B interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol. Vol. 21, p. 101059, (2019). https://doi.org/10.1016/j.redox.2018.11.017
  14. T. Manabe. Does BDNF have pre- or postsynaptic targets? Science. Vol. 295, pp. 1651-1653, (2002). https://doi.org/10.1126/science.1070163
  15. Y. Son, Y. K. Cheong, N. H. Kim, H. T. Chung, D. G. Kang, H. O. Pae, Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J Signal Transduct. Vol. 2011, p. 792639, (2011).
  16. M. L. Pfau, S. J. Russo, Neuroinflammation Regulates Cognitive Impairment in Socially Defeated Mice. Trends Neurosci. Vol. 39, pp. 353-355, (2016). https://doi.org/10.1016/j.tins.2016.04.004
  17. S. Forner, D. Baglietto-Vargas, A. C. Martini, L. Trujillo-Estrada, F. M. LaFerla, Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony. Trends Neurosci. Vol. 40, pp. 347-357, (2017). https://doi.org/10.1016/j.tins.2017.04.002
  18. S. Lombardo, U. Maskos, Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment. Neuropharmacology. Vol. 96, pp. 255-62, (2014). https://doi.org/10.1016/j.neuropharm.2014.11.018
  19. H. S. Phillips, J. M. Hains, M. Armanini, G. R. Laramee, S. A. Johnson, J. W. Winslow. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease. Neuron. Vol. 7, pp. 695-702, (1991). https://doi.org/10.1016/0896-6273(91)90273-3
  20. M. Yamamoto-Sasaki, H. Ozawa, T. Saito, M. Rosler, P. Riederer, Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res. Vol. 824, pp. 300-3, (1999). https://doi.org/10.1016/S0006-8993(99)01220-2
  21. S. Naqvi, K. J. Martin, J. S. Arthur. CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem J. Vol. 458, pp. 469-79, (2014). https://doi.org/10.1042/BJ20131115
  22. M. da Costa, J. Bernardi, L. Costa, T. Fiuza, R. Brandao, M. F. Ribeiro, J. D. Amaral, C. M. P. Rodrigues, M. E. Pereira, N-acetylcysteine Treatment Attenuates the Cognitive Impairment and Synaptic Plasticity Loss Induced by Streptozotocin, Chem Biol Interact. Vol. 272, pp. 37-46 (2017). https://doi.org/10.1016/j.cbi.2017.05.008