DOI QR코드

DOI QR Code

Growth Promotion in Red Pepper and Tomato Seedlings by Fermented Liquid Fertilizers and Elution of Mineral Nutrients by Extraction Methods

발효액비별 고추와 토마토 육묘 생육 촉진 및 추출방법별 무기양분 용출

  • Jang, Se Ji (Department of Oriental Medicine Resources, Sunchon National University) ;
  • Kuk, Yong In (Department of Oriental Medicine Resources, Sunchon National University)
  • Received : 2020.03.12
  • Accepted : 2020.04.07
  • Published : 2020.06.01

Abstract

The purpose of this study was to determine which fermented liquid fertilizer and application method yields the greatest amount of growth in red pepper (Capsicum annuum L.) and tomato (Lycopersicon esculentum MILL.) plants. Additionally, we investigated which extraction methods produce the most effective fertilizer with the highest levels of mineral nutrients. The liquid fertilizers used in this study were made from fish, bone and fish meal, red pepper leaves, and oil cake, and were extracted using fermentation or water and boiled water. In tomato plants, foliar-application of fermented fertilizer is known to promote more growth than application by drenching, regardless of the number of treatments (once or twice). In our studies, however, drenching with fertilizer promoted growth more effectively than foliar-application in red pepper plants. Studies in both tomato and red pepper have shown that the number of treatments does not significantly alter growth. Liquid fertilizers produced by a fermentation-extraction method promoted greater levels of growth in tomato compared to red pepper, and growth was greater when fertilizers were applied 20 (rather than 40) days post-sowing. Red pepper and tomato shoot fresh weight were affected more by fermented fertilizers than plant height 20 days post-sowing. In red pepper, we observed increased shoot fresh weight when using fermented liquid fertilizers with concentrations of 0.1% or greater. Tomato shoot fresh weight increased similarly in response to fermented fertilizer treatments at the same concentration levels, except those derived from fish. Fermented fish liquid fertilizer was only effective in increasing tomato shoot fresh weight in concentrations exceeding 1%. Red pepper and tomato shoot fresh weight also increased more than plant height in our studies using fermentation liquid fertilizers at 40 days after sowing. Red pepper fresh weight increased with application of bone + fish meal, red pepper leaf, and oil cake fertilizers at concentrations of 0.1%, but not with fish liquid fertilizer in concentrations under 0.5%. Shoot fresh weight in tomato increased with all liquid fertilizers. Growth in red pepper and tomato may be influenced by different kinds of fertilizers due to combinations of macro- and micro-nutrients, or specific macro-nutrients such as nitrogen, phosphoric acid, and potassium. The mineral nutrients found in fish, bone and fish meal, red pepper leaves, and oil cake were not easily extracted by fermentation; thus, liquid fertilizers made using water and boiled water methods more effectively promoted growth in red pepper and tomato due to the larger amounts of macronutrients eluted.

본 연구 목적은 선발된 생선, 골분+어분, 고춧잎, 깻묵 발효액비를 다양한 처리방법별로 고추 및 토마토 묘에 처리하여 생육촉진 정도를 알아보고자 수행하였다. 또 다른 연구목적은 선발된 자재 자체와 이들 자재를 이용하여 제조한 발효, 물 및 열수추출물에 대한 무기영양소 용출 정도를 조사하여 효과적인 추출방법을 찾는데 있었다. 생선, 골분+어분, 고춧잎 및 깻묵을 발효액비 처리에 의한 토마토 육묘의 생육은 경엽처리가 관주 처리에 비해 좋았고, 처리횟수(1회 또는 2회)에 상관없이 생육촉진에 효과적이었다. 이들 액비처리에 의한 고추육묘 생육의 경우는 관주처리가 경엽처리에 비해 좋았다. 처리횟수별 고추와 토마토 생육 증진은 큰 차이가 없었다. 그러나 전반적으로 액비에 의한 생육 증진은 고추보다는 토마토에서 좋았고, 파종 후 40일 육묘보다는 파종 후 20일묘에서 큰 것으로 나타났다. 또한 고추와 토마토의 생육 증진은 자재 간에 차이는 크지 않았다. 파종 후 20일에 이들 사용한 액비는 고추와 토마토의 초장보다는 지상부 생체중 증가에 영향을 미치는 것으로 나타났다. 고추 지상부 생체중의 경우는 모든 액비에서 0.1% 처리에서 효과가 있었고, 토마토의 경우도 생선액비를 제외하고 0.1%에서 효과가 있었다. 그러나 생선의 경우는 1% 이상의 농도에서 토마토 지상부 생채중이 증가하였다. 파종 후 40일 경우도 사용한 액비는 고추와 토마토의 초장보다는 지상부 생체중 증가에 영향을 미치는 것으로 나타났다. 고추 지상부 생체중의 경우는 생선액비(0.5%)을 제외한 골분+어분, 고춧잎 및 깻묵 액비에서 0.1% 처리에서 효과가 있었다. 토마토의 지상부 생체중의 경우는 0.1% 모든 액비처리에서 증가하였다. 이들 액비처리에 의한 고추 및 토마토의 생육 증가는 질소, 인산 및 칼륨과 같은 주요 대량 무기영양소 뿐만 아니라 다양한 대량 및 미량 무기영양소의 상호작용에 의해 기인되는 것으로 사료된다. 생선, 골분, 어분, 고춧잎 및 깻묵에 함유되어 있는 무기영양소는 발효추출물에 의해 용출이 잘되지 않았다. 그러나 이들 자재에 의한 물과 열수추출법은 다량원소 용출이 발효추출법보다 많아서 추후 고추 및 토마토 생육을 촉진하는데 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Aldrich, R. J. and R. J. Kremer. 1997. Principles in Weed Management. Iowa State University Press. p. 455.
  2. An, N. H., Y. K. Kim, Y. Lee, H. J. Jee, J. H. Park, S. J. Hong, and E. J. Han. 2011. Changes in chemical properties and microbial population of farm-made organic liquid fertilizer during fermenting process. Korean J Org Agric. 19 : 417-425.
  3. An, N. H., Y. S. Jo, J. R. Jo, Y. K. Kim, Y. Lee, H. J. Jee, S. M. Lee, K. L. Park, and B. M. Lee. 2012. The survey of actual using conditions of farm-made liquid fertilizers for cultivating environment-friendly agricultural products. Korean J. Org. Agric. 20(3) : 345-356.
  4. Avis, T. J. 2007. Antifungal compounds that target fungal membrane: applications in plant disease control. Can. J. Plant Rath. 23 : 323-329. https://doi.org/10.1080/07060660709507478
  5. Bae, E. J., B. W. Kim, M. J. Kim, S. H. Kwon, J. H. Choi, and H. Y. Na. 2015. Growth response of some vegetables seedlings according to blood fertilizer. J. Korean Soc. People Plant Environ. 18 : 47-52. https://doi.org/10.11628/ksppe.2015.18.1.047
  6. Chae, J. C., B. H. Gang, S. J. Park, and S. H. Kim. 2008. Samgo Cultivation Principles, Hyangmunsa, Korea, p.434 (In Korean).
  7. Choi, D. H., J. K. Sung, S. M. Lee, Y. H. Lee, J. M. Kim, J. A. Jung, and B. H. Song. 2008. Selection of useful organic materials as an additional fertilizer for organic red-pepper production and the application effect. Korean J. Soil Sci. Fert. 41(3) : 153-157.
  8. Elzaawely, A. A., M. E. Ahamed, H. F. Maswada, and T. D. Xuan. 2017. Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Archives of Agronomy and Soil Science 63 : 687-699. https://doi.org/10.1080/03650340.2016.1234042
  9. Hartz, T. K., R. Smith, and M. Gaskell. 2010. Nitrogen availability from liquid organic fertilizers. Hort Technol. 20 : 169-172.
  10. Hollomom, D. W. 1993. Resistance to azole fungicides in the field. Biochem Soc Trans. 21 : 1047-1051. https://doi.org/10.1042/bst0211047
  11. Jang, S. J. and Y. I. Kuk. 2019. Growth promotion effects of plant extracts on various leafy vegetable crops. Hortic. Sci. Technol. 37 : 322-336. https://doi.org/10.7235/HORT.20190033
  12. Joo, S. J. 2009. Effects of organic liquid fertilizer composition on the growth of Chinese cabbage and red pepper. Ph. D. Thesis. Chungbuk National University. pp. 1-87.
  13. Joo, S. J. and G. J. Lee. 2010. Effects of organic liquid fertilizer fertigation on growth and fruit quality of hot pepper. Korean J. Org. Agric. 18(1) : 63-74.
  14. Khan, W., U. P. Rayirath, S. Subramanian, M. N. Jithesh, P. Rayorath, D. M. Hodges, A. T. Critchley, J. S. Craigie, J. Norrie, and B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28 : 386-399. https://doi.org/10.1007/s00344-009-9103-x
  15. Kuk, Y. I., Y. B. Yun, S. J. Jang, J. Y. Jeong, D. S. Kim, and S. S. Kim. 2019. Evaluation of Tomato Growth-promoting Effect and Mineral Nutrient of Farm-made Liquid Fertilizers Korean J. Org. Agric. 27(2) : 205-224. https://doi.org/10.11625/KJOA.2019.27.2.205
  16. Kunicki, E., A. Grabowska, A. Sekara, and R. Wojciechowska. 2010. The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 22 : 9-13.
  17. Lee, G. J., J. O. Jeon, J. H. Park, S. Y. Nam, and T. J. Kim. 2011. The manufacturing characteristics of organic liquid fertilizer with poultry manure, soybean meal, and rice bran. Korean J. Org. Agric. 19(4) : 577-587.
  18. Liedl, B. E., J. Bombardiere, and J. M. Chaffield. 2006. Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste. Water Sci. Technol. 53 : 69-79.
  19. Lim, T. J., I. B. Lee, S. B. Kang, J. M. Park, and S. D. Hong. 2010. Effects of fertigation with pig slurry on growth and yield of red pepper. Korean Envir. Agric. 29(3) : 227-231. https://doi.org/10.5338/KJEA.2010.29.3.227
  20. Moller, M. and M. L. Smith. 1998. The significance of the mineral component of seaweed suspentions on lettuce (Lactuca sativa L.) seedling growth. J. Plant Physiol. 153 : 658-63. https://doi.org/10.1016/S0176-1617(98)80217-4
  21. O'Brien, R. G. 1994. Fungicide resistance in populations of cucurbit powdery mildew (Spharotheca fuliginea). NZ J Crop Hortic Sci. 22 : 145-149. https://doi.org/10.1080/01140671.1994.9513818
  22. Park, J. S., M. J. Lee, S. Y. Lee, J. S. Kim, T. K. Lee, H. M. Ro, S. J. Kim, S. W. Jeon, S. G. Seo, K. Y. Kim, G. H. Lee, and B. G. Jeong. 2015. Effect of mixed liquid fertilization on growth responses of cherry tomatoes and soil chemical properties. Kor. J. Hort. Sci. Technol. 33(2) : 268-275.
  23. RDA. 2000. Methods of soil and plant analysis. Rural Development Adminstration, Korea. Sammi Press. pp. 1-202.
  24. RDA. 2018. Tomato 2nd publication.
  25. Reuveni, M., V. Agapov, and R. Reuveni. 1996. Controlling powdery mildew cause by Spharotheca fuliginea in cucumber by foliar sprays of phosphate and potassium salts. Crop Prot. 15(1) : 49-53. https://doi.org/10.1016/0261-2194(95)00109-3
  26. Rosen, C. J. and D. L. Allan. 2006. Exploring the benefits of organic nutrient sources for crop production and quality. Hort Technol. 17 : 422-430. https://doi.org/10.21273/HORTTECH.17.4.422
  27. SAS (Statistical Analysis System). 2000. SAS/STAT Users Guide, Version 7. Statistical Analysis System Institute, Cary, NC, USA.
  28. Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50 : 425-431. https://doi.org/10.1614/0043-1745(2002)050[0425:HEOEO]2.0.CO;2
  29. Yamada, K. and H. L. Xu. 2001. Properties and applications of an organic fertilizer inoculated with effective microorganisms. J. Crop Prod. 3(1) : 255-268. https://doi.org/10.1300/J144v03n01_21