DOI QR코드

DOI QR Code

Study on Multiple Shock Wave Structures in Supersonic Internal Flow

초음속 내부유동에서 다수의 충격파 구조에 대한 연구

  • James, Jintu K (Department of Mechanical Engineering, Andong National University) ;
  • Kim, Heuy Dong (Department of Mechanical Engineering, Andong National University)
  • Received : 2019.12.03
  • Accepted : 2020.03.31
  • Published : 2020.06.30

Abstract

The structure and dynamics of multiple shock waves are studied numerically using a finite volume solver for a model with nozzle exit Mach number of 1.75. At first, the shock variation based on images were analyzed using a Matlab program then later to the wall static pressure variation. The amplitude and frequency variation for multiple shock waves are analyzed. The cross-correlation between the shock location suggests that the first and the second shocks are well correlated while the other shocks show a phase lag in the oscillation characteristics. The rms values of pressure fluctuations are maximum at the shock locations while the other parts in the flow exhibit a lower value os standard deviation.

다수의 충격파에 대한 구조와 거동특성은 노즐 출구 마하수가 1.75인 모델에 대하여 유한체적기법을 사용하여 수치해석적으로 조사하였다. 먼저 이미지를 기반으로 한 충격파 진동특성을 Matlab 프로그램을 사용하여 분석한 후 특정 위치에서 벽면 정압변화를 분석하였다. 또한 다수 충격파들의 진폭 및 주파수도 조사하였다. 충격파 위치들 사이의 상호상관은 첫번째 충격파와 두번째 충격파는 서로 관련이 있는 반면에 다른 충격파들은 진동특성에서 위상 지연을 나타내었다. 벽면 압력변동의 RMS값은 충격파 위치에서 최대이며 유동의 다른 부분에서는 낮은 OS 표준편차값을 나타내었다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2016R1A2B3016436).

References

  1. Matsuo, K., Miyazato, Y. and Kim, H.D., "Shock Train and Pseudo-shock Phenomena in Internal Gas Flows," Progress in Aerospace Sciences, Vol. 35, No. 1, pp. 33-100, 1999. https://doi.org/10.1016/S0376-0421(98)00011-6
  2. Gnani, F., Zare-Behtash, H. and Kontis, K., "Pseudo-shock Waves and Their Interactions in High-speed Intakes," Progress in Aerospace Sciences, Vol. 82, pp. 36-56, 2015.
  3. Rodi, P.E., Emami, S. and Trexler, C.A., "Unsteady Pressure Behavior in a Ramjet/Scramjet Inlet," Journal of Propulsion and Power, Vol. 12, No. 3, pp. 486-493, 1996. https://doi.org/10.2514/3.24061
  4. Wagner, J.L., Yuceil, K.B., Valdivia, A., Clemens, N.T. and Dolling, D.S., "Experimental Investigation of Unstart in an Inlet/isolator Model in Mach 5 Flow," AIAA Journal, Vol. 47, No. 6, pp. 1528-1542, 2009. https://doi.org/10.2514/1.40966
  5. Waltrup, P.J. and Billig, F.S., "Structure of Shock Waves in Cylindrical Ducts," AIAA Journal, Vol. 11, No. 10, pp. 1404-1408, 1973. https://doi.org/10.2514/3.50600
  6. Ikui, T., Matsuo, K. and Sasaguchi, K., "Modified Diffusion Model of Pseudo-shock Waves Considering Upstream Boundary Layers," JSME Bulletin, Vol. 24, No. 197, pp. 1920-1927, 1981. https://doi.org/10.1299/jsme1958.24.1920
  7. Smart, M.K., "Flow Modeling of Pseudoshocks in Backpressured Ducts," AIAA Journal, Vol. 53, No. 12, pp. 577-3588, 2015. https://doi.org/10.2514/1.J054021
  8. Cox-Stouffer, S.K. and Hagenmaier, M.A., "The Effect of Aspect Ratio on Isolator Performance," 39th Aerospace Sciences Meeting and Exhibit, AIAA 2001-0519, 2001.
  9. Koo, H. and Raman, V., "Large-eddy Simulation of a Supersonic Inlet-isolator," AIAA Journal, Vol. 50, No. 7, pp. 1596-1613, 2012. https://doi.org/10.2514/1.J051568
  10. Morgan, B., Duraisamy, K. and Lele, S.K., "Large-eddy Simulations of a Normal Shock Train in a Constant-area Isolator," AIAA Journal, Vol. 52, No. 3, pp. 539-558, 2014. https://doi.org/10.2514/1.J052348
  11. Fievet, R., Koo, H., Raman, V. and Auslender, A. H., "Numerical Investigation of Shock Train Response to Inflow Boundary-layer Variations," AIAA Journal, Vol. 55, No. 9, pp. 2888-2901, 2017. https://doi.org/10.2514/1.J055333
  12. Robin, L.H. and Mirko Gamba, "Shock Train Unsteadiness Characteristics, Oblique-to-normal Transition, and Three-dimensional Leading Shock Structure," AIAA Journal, Vol. 56, No. 4, pp. 1569-1587, 2017. https://doi.org/10.2514/1.J056344
  13. Carroll, B., Lopez Fernandez, P. and Dutton, J., "Computations and Experiments for a Multiple Normal Shock/boundary Layer Interaction," Journal of Propulsion and Power, Vol. 9, No. 3, pp. 405-411, 1993. https://doi.org/10.2514/3.23636
  14. Carroll, B. and Dutton, J., "Characteristics of Multiple Shock Wave/turbulent Boundary Layer Interactions in Rectangular Ducts," Journal of Propulsion and Power, Vol. 6, No. 2, pp. 186-193, 1990. https://doi.org/10.2514/3.23243