DOI QR코드

DOI QR Code

Phylogeographic and population genetic study of a Korean endemic freshwater fish species, Zacco koreanus

한국 고유 담수어종 참갈겨니(Zacco koreanus) 개체군의 계통지리학 및 집단유전학 연구

  • Kim, Yu Rim (Molecular Ecology and Evolution Laboratory, Department of Biological Science, College of Science & Engineering, Sangji University) ;
  • Jang, Ji Eun (Molecular Ecology and Evolution Laboratory, Department of Biological Science, College of Science & Engineering, Sangji University) ;
  • Choi, Hee-kyu (Molecular Ecology and Evolution Laboratory, Department of Biological Science, College of Science & Engineering, Sangji University) ;
  • Lee, Hyuk Je (Molecular Ecology and Evolution Laboratory, Department of Biological Science, College of Science & Engineering, Sangji University)
  • 김유림 (상지대학교 생명과학과 분자생태및진화학실험실) ;
  • 장지은 (상지대학교 생명과학과 분자생태및진화학실험실) ;
  • 최희규 (상지대학교 생명과학과 분자생태및진화학실험실) ;
  • 이혁제 (상지대학교 생명과학과 분자생태및진화학실험실)
  • Received : 2020.11.25
  • Accepted : 2020.12.10
  • Published : 2020.12.31

Abstract

We conducted a phylogeographic analysis of Korean endemic Zacco koreanus populations inhabiting the East-flowing river (Gangneung Yeongokcheon; GY, Yangyang Namdaecheon; YN), the Han River (Seomgang; SG, Soksacheon; SS), and the Nakdong River(Gilancheon; GA) using the mitochondrial DNA cytochrome oxidase I (COI) gene (619 bp). Population genetic analysis was further performed to assess the population connectivity for the GY river where there is a large number of human-made artificial weirs with several fishways. The phylogeographic analysis revealed that while the populations of the East-flowing river and those of the Han River formed a monophyletic lineage, the Nakdong River individuals represented a distinct lineage with 3.7-4.2% (mean=4.0%) genetic distance from the other lineages. The population genetic analysis of the GY showed that a mid-stream population harbored relatively higher mitochondrial diversity relative to up- and down-stream populations, and there was no genetic differentiation between these three populations. The latter findings might suggest high genetic connectivity between the populations via genetic flow along the fishways. However, an analysis using faster-evolving genetic markers, such as microsatellites, is needed to confirm the findings of high population connectivity. Our study suggests the possibility of the presence of cryptic species in Z. koreanus in the Nakdong River basin. However, further study with more individual samples as well as additional markers or even more advanced genomic tools is required to test our hypothesis. Ecological or phenotypic analyses should be conducted to test whether the observed Nakdong River lineage represents a different or cryptic species, or simply hidden, but excessive, intraspecific diversity.

본 연구는 동해유입하천(강릉 연곡천, 양양 남대천), 한강수계(섬강, 속사천), 낙동강수계(길안천)에 서식하는 참갈겨니(Zacco koreanus) 개체군을 대상으로 채집된 110개체로부터 미토콘드리아 DNA COI 유전자(mitochondrial DNA cytochrome oxidase I)를 분자마커로 이용하여 계통지리학적 분석을 수행하고, 추가적으로 강릉 연곡천 상·중·하류 개체군을 대상으로 집단유전학적 분석을 수행하였다. 계통지리학 분석 결과, 동해유입하천과 한강수계의 참갈겨니 개체군은 동일한 단일계통을 나타내었고, 낙동강수계의 개체군은 상이한 계통으로 분기됨을 나타내었으며, 다른 수계 계통과의 유전적 거리 수치 범위가 평균 4.0%(3.7~4.2%)로서 동일종 이상 수준을 보여 잠재종 가능성을 시사하였다. 참갈겨니가 서식하는 수계에 따른 형태학적 차이는 연구된 바 있으나 DNA 염기서열의 변이를 이용한 분자유전학적 연구는 부족한 실정이므로 본 연구 결과는 향후 낙동강수계 참갈겨니 개체군의 계통분류학적 연구에 기초자료로 활용될 수 있을 것으로 판단된다. 추후 집단유전체학 및 생태학적 분석을 통하여 관찰된 낙동강수계 계통이 다른 종, 잠재종 혹은 단순히 큰 수준의 종내 변이를 나타내는지에 대한 추가적인 연구가 필요하다. 강릉 연곡천 상·중·하류에 서식하는 개체군의 집단유전학 분석을 통해 중류의 개체군이 상대적으로 높은 다양성을 나타냈으며 상·중·하류 개체군 간의 유전적 차이는 나타나지 않았다. 이는 상·중·하류 개체군 간 유전자 확산이 원활하게 이루어지고 있음을 의미하며 하천의 개체군 간 연결성을 판단할 수 있는 지표로 활용될 수 있다. 하지만 생태학적 시간 스케일의 연구에 더 적합한 분자마커를 이용한 추후 연구가 필요할 것으로 사료된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(2020003050004).

References

  1. Avise JC. 2004. Molecular Markers, Natural History and Evolution. Sinauer Associates. Sunderland, MA.
  2. Brown WM, M George and AC Wilson. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 76:1967-1971. https://doi.org/10.1073/pnas.76.4.1967
  3. Byeon HK and JK Oh. 2015. Fluctuation of fish community and inhabiting status of introduced fish in Gangeungnamdae stream, Korea. Korean J. Environ. Ecol. 29:718-728. https://doi.org/10.13047/KJEE.2015.29.5.718
  4. Chae BS and HN Yoon. 2006. Geographic variation and distribution of nuptial color patterns in Korean chub, Zacco koreanus (Cyprinidae, Pisces). Korean J. Ichthyol. 18:97-106.
  5. Choi HK and HJ Lee. 2018. Development of a species identification method for the egg and fry of the three Korean bitterling fishes (Pisces: Acheilognathinae) using RFLP(restriction fragment length polymorphism) markers. Korean J. Environ. Biol. 36:352-358. https://doi.org/10.11626/KJEB.2018.36.3.352
  6. Choi JS, SC Park, YS Jang, KY Lee and JK Choi. 2006. Population dynamics of Korean chub (Zacco koreanus, Cyprinidae) in the upstream and downstream of Lake Hoengseong. Korean J. Environ. Ecol. 20:391-399.
  7. Excoffier L and HE Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10:564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  8. Fu C, ZD Cao and SJ Fu. 2013. The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish species with different swimming capacities. J. Exp. Biol. 216:3164-3174.
  9. Galtier N, B Nabholz, S Glemin and GDD Hurst. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol. Ecol. 18:4541-4550. https://doi.org/10.1111/j.1365-294X.2009.04380.x
  10. Gaston KJ. 2010. Biodiversity. pp. 27-44. Conservation Biology for All (Sodhi NS and PR Ehrlich, eds.). Oxford University Press. Oxford, UK.
  11. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res. 41:95-98.
  12. Hebert PD, A Cywinska, SL Ball and JR Dewaard. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B.-Biol. Sci. 270:313-321. https://doi.org/10.1098/rspb.2002.2218
  13. Kim DO, JC Park, JS Hwang, DS Kim, WO Lee and G Hwang. 2020. Fish fauna using fishway on six river in Korea. Korean J. Ecol. Environ. 53:255-264. https://doi.org/10.11614/KSL.2020.53.3.255
  14. Kim IS, MK Oh and K Hosoya. 2005. A new species of cyprinid fish, Zacco koreanus with redescription of Z. temminckii (Cyprinidae) from Korea. Korean J. Ichthyol. 17:1-7.
  15. Kim P, JH Han and SL An. 2020. Genetic identification of species and natural hybridization determination based on mitochondrial DNA and nuclear DNA of genus Zacco in Korea. Mitochondrial DNA A 31:221-227. https://doi.org/10.1080/24701394.2020.1777994
  16. Kim YJ, IC Kim, SY Lee, WO Lee, YC Cho and JS Lee. 2003. The use and conservation in molecular phylogeny of fish mitochondrial DNAs in Korean waters. Korean J. Env. Eco. 36:221-234.
  17. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  18. Kumar S, G Stecher and K Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. https://doi.org/10.1093/molbev/msw054
  19. Lee SH, HG Jeong, HS Shin, Y Shin, SW Lee and JK Lee. 2017. Comparison on ecological index characteristics between Zacco platypus and Zacco koreanus by stream order in Korea. Korean J. Ecol. Environ. 50:403-410. https://doi.org/10.11614/KSL.2017.50.4.403
  20. Moon WK, DY Bae, DH Kim, HB Shin, JB Suh, KH Lim, EH Lee, JS Yoo, KG An and JK Kim. 2019. Assessment of fish fineness ratios passing through a fishway. Korean J. Environ. Biol. 37:726-734. https://doi.org/10.11626/KJEB.2019.37.4.726
  21. NIBR. 2011. Red Data Book of Endangered Fishes in Korea. National Institute of Biological Resources. Ministry of Environment, Korea.
  22. NIBR. 2013. Endemic Species of Korea. National Institute of Biological Resources. Ministry of Environment, Korea.
  23. Oh MK and JY Park. 2009. A molecular systematics of Korean Zacco species inferred from mitochondrial cytochrome b gene sequence. Korean J. Ichthyol. 21:291-298.
  24. Petit RJ, A El Mousadik and O Pons. 1998. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12:844-855. https://doi.org/10.1046/j.1523-1739.1998.96489.x
  25. Putman AI and I Carbone. 2014. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol. Evol. 4:4399-4428. https://doi.org/10.1002/ece3.1305
  26. Seo JW. 2005. Fish Fauna and ecological characteristics of dark chub (Zacco temminckii) population in the mid-upper region. Korean J. Limnol. 38:196-206.
  27. Son YM and HB Song. 1998. Freshwater fish fauna and distribution in Kojedo. Korean J. Ichthyol. 10:87-97.
  28. Teacher AGF and DJ Griffiths. 2011. HapStar: automated haplotype network layout and visualization. Mol. Ecol. Resour. 11:151-153. https://doi.org/10.1111/j.1755-0998.2010.02890.x
  29. Thompson JD. 1994. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  30. Ward RD, TS Zemlak, BH Innes, PR Last and PD Hebert. 2005. DNA barcoding Australia's fish species. Philos. Trans. R. Soc. B-Biol. Sci. 360:1847-1857. https://doi.org/10.1098/rstb.2005.1716
  31. Yoon JD, JH Kim, SH Park and MH Jang. 2018. The distribution and diversity of freshwater fishes in Korean Peninsula. Korean J. Ecol. Environ. 51:71-85. https://doi.org/10.11614/KSL.2018.51.1.071