DOI QR코드

DOI QR Code

Comparison of B and Q biotype distribution, insecticidal mortality, and TYLCV viruliferous rate between Korean and Chinese local populations of Bemisia tabaci

한국과 중국 채집 담배가루이 지역계통의 B, Q biotype 분포 및 살충제 약제반응, 토마토황화잎말림바이러스 보독율 비교

  • Jeong, In-Hong (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • Park, Bueyong (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • Lee, Gwan-Seok (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • Wu, Qiong (College of Chemistry and Pharmacy, Qingdao Agricultural University) ;
  • Li, Feifei (College of Chemistry and Pharmacy, Qingdao Agricultural University) ;
  • Zhang, Zhenxing (College of Chemistry and Pharmacy, Qingdao Agricultural University) ;
  • Zhu, Yongzhe (College of Chemistry and Pharmacy, Qingdao Agricultural University)
  • 정인홍 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 박부용 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 이관석 (농촌진흥청 국립농업과학원 작물보호과) ;
  • ;
  • ;
  • ;
  • Received : 2020.10.16
  • Accepted : 2020.12.08
  • Published : 2020.12.31

Abstract

International trade is one of the primary ways that non-native species spread worldwide. Korea and China are geographically close and have a large mutual trade volume. To investigate the population movement of the invasive whitefly(Bemisia tabaci Gennadius) between the two countries, we compared the biotype distribution, insecticidal response, and the TYLCV(tomato yellow leaf curl virus) viruliferous rate of local populations collected in 2019. Based on the mitochondrial DNA COI sequences of B. tabaci, only the Q biotype was found in all populations in Korea, whereas the B biotype (14.3%) and Q biotype (85.7%) were found in China. In the haplotype composition of the B. tabaci Q biotype, only the Q1 group[Q1H1(79.8%) and Q1H2(20.2%)] was observed in China, but the Q1 group [Q1H1(1.7%) and Q1H2(97.5%)] and the Q2 group(only one individual) were found in Korea. The Korean populations showed high mortality(more than 80%) from 15 commercial insecticides, but the Chinese populations showed significantly low mortality from eight insecticides. No TYLCV infections were observed in the Korean populations while the average TYLCV viruliferous rate was 21.4% in the Chinese populations. Taken together, the results suggest that the population structures of B. tabaci in the two countries are different and may have different immigration histories.

세계적인 침입해충 담배가루이(Bemisia tabaci Gennadius)의 한국 계통과 중국 계통의 유연관계를 알아보기 위하여 2019년에 채집한 두 계통들의 biotype 분포, 살충제 반응, 바이러스 보독율을 조사하고 차이를 분석하였다. 미토콘드리아 COI 유전자 서열을 이용하여 집단 분석한 결과 국내는 모든 지역계통에서 Q biotype만 발견되었으며, 중국은 B biotype (14.3%)과 Q biotype (85.7%)이 동시에 발견되었다. 담배가루이 Q biotype의 haplotpye 구성도 중국은 모두 Q1 그룹만 관찰되었고 Q1H1 (79.8%), Q1H2(20.2%)로 구성되어 있었으며, 한국은 Q1이 우세한 가운데 Q2도 관찰되었으며 Q1 그룹의 구성도 Q1H1 (1.7%), Q1H2 (97.5%)로 중국과는 크게 달랐다. 15종 살충제에 대한 약제반응은 국내 계통은 일부 약제를 제외하고 대부분 약제에서 충분한 살충력(mortality≥80%)을 보여주었으나 중국 계통은 40% 이하의 살충력을 보인 약제들이 다수 있었으며 한국보다는 높은 저항성을 갖고 있었다. 토마토 황화잎말림바이러스(TYLCV)의 보독율은 국내 계통에서는 발견되지 않았으며 중국의 경우 0~60%(평균 21.4%)가 발견되었다. 따라서 한국와 중국의 담배가루이 계통 간에는 유전적 조성과 살충제 반응, 바이러스 보독율에 있어서 큰 차이를 보여주었으며 양국의 담배가루이가 서로 다른 유입 패턴을 갖고 있음을 알 수 있었다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 아젠다과제(과제번호: PJ014018)의 지원에 의해 이루어진 연구결과의 일부입니다.

References

  1. Abbott WS. 1925. A method of computing the effectiveness of an insecticide. J Econ. Entomol. 18:265-267. https://doi.org/10.1093/jee/18.2.265a
  2. Ahmad M, MI Arif and M Naveed. 2010. Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. J. Pest Sci. 83:409-420. https://doi.org/10.1007/s10340-010-0311-8
  3. Brown JK, DR Frohlich and RC Rosell. 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci of a species complex? Annu. Rev. Entomol. 40:511-534. https://doi.org/10.1146/annurev.en.40.010195.002455
  4. Chen W, DK Hasegawa, N Kaur, A Kilot, PV Pinheiro, J Luan, MC Stensmyr, Y Zheng, W Liu, H Sun, Y xu, Y Luo, A Kruse, X Yang, S Kontsedalov, G Lebedev, TW Fishier, DR Nelson, WB Hunter, JK Brown, G Jander, M Cilia, AE Douglas, M Ghanim, AM Simmons, WM Wintermantel, KS Ling and Z Fei. 2016. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 14:110-124. https://doi.org/10.1186/s12915-016-0321-y
  5. Choi HS, SH Lee, MK Kim, HR Kwak and JS Kim. 2010. Occurrence of virus disease on major crops in 2009. Res. Plant Dis. 16:1-9. https://doi.org/10.5423/RPD.2010.16.1.001
  6. Chu D, X Hu, C Gao, H Zhao, RL Nichols and X Li. 2012. Use of mitochondrial cytochrome oxidase I polymerase chain reaction-restriction fragment length polymorphism for identifying subclades of Bemisia tabaci Mediterranean group. J Econ. Entomol. 105:242-251. https://doi.org/10.1603/EC11039
  7. De Barro PJ, F Driver, JW Trueman and J Curran. 2000. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol. Phylogenet. Evol. 16:29-36. https://doi.org/10.1006/mpev.1999.0768
  8. De Barro PJ and MZ Ahmed. 2011. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS One 6:e25579. https://doi.org/10.1371/journal.pone.0025579
  9. De Barro PJ, SS Liu, LM Boykin and AB Dinsdale. 2011. Species status of Bemisia tabaci. Annu. Rev. Entomol. 56:1-19. https://doi.org/10.1146/annurev-ento-112408-085504
  10. Devine GJ and I Delholm. 1998. An unconventional use of piperonyl butoxide of managing the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Bull. Entomol. Res. 88:601-610. https://doi.org/10.1017/S0007485300054262
  11. Dinsdale A, L Cook, C Riginos, YM Buckley and P De Barro. 2010. Refined global analysis of Bemisa tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 103:196-208. https://doi.org/10.1603/AN09061
  12. Ghanim M, I Sobol, M Ghanim and H Czosnek. 2007. Horizontal transmission of begomoviruses between Bemisia tabaci biotypes. Arthropod-Plant Interact. 1:195-204. https://doi.org/10.1007/s11829-007-9018-z
  13. Ha TK, IC Hwang, JK Kim, YH Song, GH Kim and YM Yu. 2003. Toxicities and control effect of three insecticides to greenhouse whitefly, Traleurodes vaporariorum and sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Korean J. Pesticide Sci. 3:29-36.
  14. Horowitz AR, S Kontsedalov, V Khasdan and I Ishaaya. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 58:216-225. https://doi.org/10.1002/arch.20044
  15. Hong KJ, JH Lee, GS Lee and S Lee. 2012. The status quo of invasive alien insect species and plant quarantine in Korea. J. Asia-Pac. Entomol. 15:521-532. https://doi.org/10.1016/j.aspen.2012.06.003
  16. Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46:10-18. https://doi.org/10.1111/j.1365-2664.2008.01600.x
  17. Kil EJ, J Park, H Lee, J Kim, HS Choi, KY Lee, CS Kim and S Lee. 2014. Lamium amplexicaule (Lamiaceae): a weed reservoir for tomato yellow leaf curl virus (TYLCV) in Korea. Arch. Virol. 159:1305-1311. https://doi.org/10.1007/s00705-013-1913-2
  18. Kim E and Y Kim. 2014. Report on mixed occurrence of tobacco whitefly (Bemisia tabaci) biotypes B and Q in oriental melon farms in Kyungpook Province, Korea. Korean J. Appl. Entomol. 53:466-472.
  19. Kim GH, YS Lee, IH Lee and KS Ahn. 2000. Suceptibility of sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) to commercially registered insecticides in Korea. Korean J. Appl. Entomol. 4:51-58.
  20. KTSPI. 2017. Major vegetable import and export trends. In: Trend Analysis Vol. 114 (YT Jo, JM Park and AY Kim, eds.). Korea Trade Statistics Promotion Institute. Seoul.
  21. Kwon DH, M Kim, H Kim, Y Lee, KJ Hong, SH Lee and S Lee. 2015. Estimation of genetic divergence based on mitochondrial DNA variation for an invasive alien species, Metcalfa pruinosa (Say), in Korea. J. Asia-Pac. Entomol. 18:447-451. https://doi.org/10.1016/j.aspen.2015.03.009
  22. Kwon DH, SJ Kim, TJ Kang, JH Lee and DH Kim. 2017. Analysis of the molecular phylogenetics and genetic structure of an invasive alien species, Ricania shantungensis, in Korea. J. Asia-Pac. Entomol. 20:901-906. https://doi.org/10.1016/j.aspen.2017.06.008
  23. Lee ML, SB Ahn and WS Cho. 2000. Morphological characteristics of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and discrimination of their biotypes in Korea by DNA Markers. Korean J. Appl. Entomol. 39:5-12.
  24. Lee W and GS Lee. 2017. Reassessment of the taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) based on mitochondrial COI gene sequences. Korean J. Appl. Entomol. 52:107-120.
  25. Lee SW, SG Lee, JJ Kim, CK Park, HH Park, KH Kim and BY Choi. 2010. Neoniconoid resistance of Bemisia tabaci local populations and its clustering analysis. p. 63. In: Spring Symposium of the Korean Society of Pesticide Science. Yesan, Korea.
  26. Lee W, J Park, GS Lee, S Lee and S Akimoto. 2013. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 8:e63817. https://doi.org/10.1371/journal.pone.0063817
  27. Lee W, Y Lee, S Kim, JH Lee, H Lee, S Lee and K Hong. 2016. Current status of exotic insect pests in Korea: comparing border interception and incursion during 1996-2014. J. Asia-Pac. Entomol. 19:1095-1101. https://doi.org/10.1016/j.aspen.2016.09.003
  28. Lee Y, J Kim, S Hong, J Park and H Park. 2012. Occurrence of sweet-potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and its response to insecticide in Gyeonggi area. Korean J. Appl. Entomol. 51:377-382. https://doi.org/10.5656/KSAE.2012.09.0.051
  29. Li HR, HP Pan, YL Tao, YJ Zhang and D Chu. 2017. Population genetics of an alien whitefly in China: implications for its dispersal and invasion success. Sci. Rep. 7:2228-2235. https://doi.org/10.1038/s41598-017-02433-5
  30. Liu TX. 2004. Toxicity and efficacy of spiromesifen, a tetronic acid insecticide, against sweet potato whitefly (Homoptera: Aleyrodidae) on melons and collards. Crop Prot. 23:505-513. https://doi.org/10.1016/j.cropro.2003.10.006
  31. Luo C, CM Jones, G Devine, F Zhang, I Denholm and K Gorman. 2010. Insecticide resistance in Bemisia tabaci biotype Q(Hemi-ptera: Aleyrodidae) from China. Crop Prot. 29:429-434. https://doi.org/10.1016/j.cropro.2009.10.001
  32. Mahadav A, S Kontsedalov, H Czosne and M Ghanim. 2009. Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochem. Mol. Biol. 39:668-676. https://doi.org/10.1016/j.ibmb.2009.08.002
  33. Mota-Sanchez D and JC Wise. 2020. The arthropod pesticide resistance database. Michigan State University. http://www.pesticideresistance.org
  34. Pan H, EL Preissner, D Chu, S Wang, Q Wu, Y Carriere, X Zhou and Y Zhang. 2015. Insecticides promote viral outbreaks by altering herbivore competition. Ecol. Appl. 25:1585-1595. https://doi.org/10.1890/14-0752.1
  35. Perring TM. 2001. The Bemisia tabaci species complex. Crop Prot. 20:725-737. https://doi.org/10.1016/S0261-2194(01)00109-0
  36. Perring TM, AD Cooper, RJ Rodriguez, CA Farrar and TS Bellows. 1993. Identification of a whitefly species by genomic and behavioral studies. Science 259:74-77. https://doi.org/10.1126/science.8418497
  37. Qu WM, N Liang, ZK Wu, YG and D Chu. 2020. Minimum sample sizes for invasion genomics: Empirical investigation in an invasive whitefly. Ecol. Evol. 1:38-49.
  38. Teng X, FH Wan and D Chu. 2010. Bemisia tabaci biotype Q dominates other biotypes across China. Fla. Entomol. 93:363-368. https://doi.org/10.1653/024.093.0307