DOI QR코드

DOI QR Code

A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications

  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University) ;
  • Al-Solami, Habeeb M. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University) ;
  • Alkenani, Naser (Department of Biological Sciences, Faculty of Science, King Abdulaziz University) ;
  • Alhebshi, Alawiah M.S. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University) ;
  • Alwabli, Afaf S. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University) ;
  • Bahieldin, Ahmed (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
  • 투고 : 2020.06.10
  • 심사 : 2020.12.03
  • 발행 : 2020.11.25

초록

Mosquitoes are extraordinary in their ability to penetrate the epidermis layer into human skin with a natural ultimate microneedle without pain, named mosquito's fascicle. The mosquito usages a very small force to pierce into the skin. This force is at least four or three orders of magnitude smaller than the insertion force for a synthetic microneedle with an ultra-sharp tip to penetrate into the layer of human skin. In order to comprehend the piercing mechanism of the mosquito's fascicle into the human skin tissue, using new techniques as the variational iteration method. to analysis of elastic stability for mosquito's fascicle with the elastic foundation is conducted. Solutions for these types of problems are not a simple procedure since the equations of stability criteria are highly nonlinear. This study presents the application of the variational iteration method for obtaining the solutions for restrained mosquito's fascicle. The study proves that the variational iteration method is a very efficient and promising approach in the elastic stability analysis of specified problems. A good agreement occurs between the present results and the experimental measurements.

키워드

과제정보

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant No. (130 - 13 - D1439). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

참고문헌

  1. Abualnour, M., Chikh, A., Hebali, H.,Kaci, A., Tounsi, A.,Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Abulwafa, E.M., Abdou, M.A., Mahmoud, A.A. (2007), "Nonlinear fluid flows in pipe-like domain problem using variational iteration method", Chaos, Solitons and Fractals, 32(4), 1384-1397. https://doi.org/10.1016/j.chaos.2005.11.050.
  3. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  4. Al-Furjan, M.S.H., Habibi, M., Chen, G., Safarpour, H., Safarpour, M., Tounsi, A. (2020b), "Chaotic oscillation of a multi-scalehybrid nano-composites reinforced disk under harmonic excitation via GDQM", Compos. Struct., 252, 112737.https://doi.org/10.1016/j.compstruct.2020.112737.
  5. Al-Furjan, M.S.H., Habibi, M., Jung, D.w., Sadeghi, S., Safarpour, H., Tounsi, A., Chen, G. (2020c), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., https://doi.org/10.1007/s00366-020-01130-8.
  6. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W., Tounsi, A. (2021a), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., https://doi.org/10.1007/s00366-020-01200-x.
  7. Al-Furjan, M.S.H., Habibi, M., Rahimi, A., Chen, G., Safarpour, H., Safarpour, M., Tounsi, A. (2020d), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., https://doi.org/10.1007/s00366-020-01144-2.
  8. Al-Furjan, M.S.H., hatami, A., Habibi, M., Shan, L., Tounsi, A. (2021b), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 113150. https://doi.org/10.1016/j.compstruct.2020.113150
  9. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M., Tounsi, A. (2020a),"A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method",Eng. Comput., https://doi.org/10.1007/s00366-020-01088-7.
  10. Alimirzaei, S., Mohammadimehr, M., Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  11. Anne, H. (1970), "Notes on the piercing mouthparts of three species of mosquitoes viewed with the scanning electron microscope", Canadian Entomologist, 102, 501-509. https://doi.org/10.4039/Ent102501-4.
  12. Aoyagi, S., Izumi, H., Aoki, T., Fukuda, M. (2005), "Development of a micro lancet needle made of biodegradable polymer for low-Invasive medical treatment", Proc. Transducers, 5, 1195-1198. https://doi.org/10.1109/SENSOR.2005.1497292.
  13. Aoyagi, S., Izumi, H., Fukuda, M. (2007), "Biodegradable polymer needle with various tip angles and effect of vibration and surface tension on easy insertion", Proceedings MEMS, 7, 397-400. https://doi.org/10.1109/MEMSYS.2007.4432974.
  14. Aoyagi, S., Izumi, H., Fukuda, M. (2008), "Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis", Sensors and Actuators A, 143, 20-28. https://doi.org/10.1016/j.sna.2007.06.007.
  15. Aoyagi, S., Izumi, H., Isono, Y., Makihira, K., Fukuda, M. (2006), "Biodegradable polymer needle having a trench for collecting blood by capillary force", Proceedings of MEMS, 6, 450-453. https://doi.org/10.1109/MEMSYS.2006.1627833.
  16. Arfken, G, Weber, H, Harris, F. (2012), Mathematical Methods for Physicists, Academic Press, Orlando, USA.
  17. Asghar, S., Naeem, M.N., Hussain, M., Taj, M., Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144.https://doi.org/10.12989/cac.2020.25.2.133.
  18. Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871
  19. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  20. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. http://dx.doi.org/10.12989/cac.2020.26.5.439
  21. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A., Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  22. Bolotin, V.V. (1964), Dynamic Stability of Elastic Systems, Holden Day, San Francisco, USA.
  23. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A., Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  24. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A., Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  25. Chikh, A. (2019), "Free Vibration Analysis of Simply Supported P-FGM Nanoplate Using a Nonlocal Four Variables Shear Deformation Plate Theory", Strojnicky casopis-J. Mech. Eng., 69(4), 9-24. https://doi.org/10.2478/scjme-2019-0039
  26. Chikh, A. (2020), "Investigations in static response and free vibration of a functionally graded beam resting on elastic foundations", Frattura ed Integrita Strutturale., 14 (51), 115-126. https://doi.org/10.3221/IGF-ESIS.51.09
  27. Gordon, R.M, Lumsden, W.H.R. (1939), "A study of the behavior of the mouth-parts of mosquitoes when taking up blood from living tissue together with some observations on the ingestion ofmicrofilariae", Annals of Tropical Medicine & Parasitology,33, 259-278. https://doi.org/10.1080/00034983.1939.11685071.
  28. Griss, P, Stemme, G. (2003), "Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer", J. Microelectromechanical Syst., 12, 296-301. https://doi.org/10.1109/JMEMS.2003.809959.
  29. Gupta, V. and Anandkumar, J. (2019), "Phenol removal by tailormade polyamide-fly ash composite membrane: Modeling and optimization", Membr. Water Treat., 10(6), 431-440. https://doi.org/10.12989/mwt.2019.10.6.431.
  30. Hashmi, S, Ling, P, Hashmi, G, Reed, ML, Gaugler, R, Trimmer, W. (1995), "Genetic transformation of nematodes using arrays of micromechanical piercing structures", Biotechniques, 19, 766-770.PMID: 8588914.
  31. He, J.H., Wazwaz, A.M., Xu, L. (2007), "The variational iteration method: Reliable, efficient and promising", Comput. Math. Appl., 54(7-8), 879-880. https://doi.org/10.1016/j.camwa.2006.12.056.
  32. Hussain, M., Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  33. Hussain, M.,Naeem, M.N., Khan, M.S.,Tounsi, A. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete,25(5), 411-425.https://doi.org/10.12989/cac.2020.25.5.411.
  34. Izumi, H., Isono, Y., Aoyagi, S. (2006), "Laser fabrication of polymer and its application to microneedle", Proceedings of APCOT, 6, (CD-ROM no. B-20).
  35. Jones, J.C. (1978), "The feeding behavior of mosquitoes", Scientific American, 238, 112-120. www.jstor.org/stable/24955760. https://doi.org/10.1038/scientificamerican0678-138
  36. Kaddari, M.,Kaci, A.,Bousahla, A.A.,Tounsi, A.,Bourada, F.,Tounsi, A.,Adda Bedia, E.A., Al-Osta, M.A. (2020),"A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  37. Kar, V. R. and Panda, S. K. (2016), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Thermal Stresses, 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.
  38. Kar, V. R., Mahapatra, T. R. and Panda, S. K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
  39. Katariya, P. V. and Panda, S. K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/aeat-11-2013-0202.
  40. Katariya, P. V. and Panda, S. K. (2018), "Frequency and Deflection Responses of Shear Deformable Skew Sandwich Curved Shell Panel: A Finite Element Approach", Arabian J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
  41. Katariya, P. V. and Panda, S. K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/SCS.2020.34.2.279.
  42. Katariya, P. V., Das, A. and Panda, S. K. (2018), "Buckling analysis of SMA bonded sandwich structure - using FEM", IOP Conference Series: Mater. Sic. Eng., 338, 012035. https://doi.org/10.1088/1757-899x/338/1/012035.
  43. Katariya, P. V., Panda, S. K. and Mahapatra, T. R. (2017a), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. https://doi.org/10.12989/AMR.2017.6.4.349.
  44. Katariya, P. V., Panda, S. K., Hirwani, C. K., Mehar, K. and Thakare, O. (2017b), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/SSS.2017.20.5.595.
  45. Katariya, P.V. and Panda, S.K. (2019), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.
  46. Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N., Tounsi, A. (2020), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150. http://dx.doi.org/10.12989/scs.2020.37.2.137
  47. Kim, I., Zhu, T., Jeon, C.H., Lawler, D.F. (2020), "Detachment of nanoparticles in granular media filtration", Membr. Water Treat., 11(1), 1-10. https://doi.org/10.12989/mwt.2020.11.1.001.
  48. Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061.
  49. Kumar, R., Sharma, N. and Lata, P. (2016b), "Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech.., 57(1), 91-103. https://doi.org/10.12989/SEM.2016.57.1.091.
  50. Kumar, R., Sharma, N. and Lata, P. (2016c), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to ramp-type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. https://doi.org/10.1080/15376494.2016.1196769.
  51. Kuo, SC, Chou, Y. (2004), "A novel polymer microneedle arrays and PDMS micromolding technique", Tamkang J. Sci. Eng., 7, 95-98.
  52. Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/SCS.2016.22.3.567.
  53. Lerche, M. H., Jensen, P. R., Karlsson, M.., Meier, S. (2015), "NMR Insights into the Inner Workings of Living Cells", Anal. Chem., 87(1), 119-132. https://doi.org/10.1021/ac501467x.
  54. Lin, L, Pisano, A.P. (1999), "Silicon-processed microneedles", J. Microelectromech. Syst., 8, 78-84. https://doi.org/10.1109/84.749406.
  55. Mehar, K. and Panda, S. K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
  56. Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565
  57. Mehar, K., Kumar Panda, S., Devarajan, Y. and Choubey, G. (2019), "Numerical Buckling Analysis of Graded CNT-reinforced Composite Sandwich Shell Structure under Thermal Loading", Compos. Struct., 240. https://doi.org/10.1016/j.compstruct.2019.03.002.
  58. Mehar, K., Mahapatra, T. R., Panda, S. K., Katariya, P. V. and Tompe, U. K. (2018), "Finite-Element Solution to Nonlocal Elasticity and Scale Effect on Frequency Behavior of Shear Deformable Nanoplate Structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(asce)em.1943-7889.0001519.
  59. Mehar, K., Mishra, P. K. and Panda, S. K. (2020b), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2020.1725193.
  60. Mehar, K., Panda, S. K. and Sharma, N. (2020a), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.
  61. Momani, S. and Abuasad, S. (2006), "Application of He's variational iteration method to Helmholtz equation", Chaos, Solitons and Fractals, 27(5), 1119-1123. https://doi.org/10.1016/j.chaos.2005.04.113
  62. Oka, K., Aoyagi, S., Arai, Y., Isono, Y., Hashiguchi, G., Fujita, H. (2002), "Fabrication of a microneedle for a trace blood test", Sens. Actuators, 97-98C, 478-485. https://doi.org/10.1016/S0924-4247(01)00872-X.
  63. Panda, S. K. and Singh, B. N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.
  64. Panda, S. K. and Singh, B. N. (2010), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224(4), 757-769. https://doi.org/10.1243/09544062jmes1809.
  65. Panda, S. K. and Singh, B. N. (2013), "Thermal Postbuckling Behavior of Laminated Composite Spherical Shell Panel Using NFEM#", Mech. Based Design Struct. Machines, 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330.
  66. Panda, S.K., Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", J. Appl. Computational Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9
  67. Panjehpour, M., Eric Woo Kee Loh, Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architecture, 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151
  68. Park, J.H., Allen, M.G. and Prausnitz, M.R. (2005), "Biodegradable polymer microneedles: fabrication, mechanics and transdermal drugdelivery", J. Controlled Release, 104, 51-66. https://doi.org/10.1016/j.jconrel.2005.02.002.
  69. Ramady, A., Mahmoud, S.R. and Atia, H.A. (2020), "A theoretical Approach in 2D-Space with Applications of The periodic Wave Solutions in The elastic Body", Membr. Water Treat., 11(4), 295-302. http://dx.doi.org/10.12989/mwt.2020.11.4.295.
  70. Richards, J.A. (1983), Analysis of Periodically Time-Varying Systems, Springer-Verlag, Berlin, Germany.
  71. Ruby, L. (1996), "Applications of Mathieu equation", American J. Phys., 64, 39-44. https://doi.org/10.1119/1.18290.
  72. Sahla, F., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  73. Saito, H., Yanai, S., Ohta, Y., Ogawa, T. (2003), "Comparison of vibration waveform and frequency effecting to reduce the needle puncturing force", Proceedings of Japanese Society for Medical and Biological Engineering, 199.
  74. Stoeber, B, Liepmann, D. (2000), "Fluid injection through out-of-plane microneedles", 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, Lyon, October. 224-228. https://doi.org/10.1109/MMB.2000.893777.
  75. Sweilan, N.H., Khader, M.M. (2007), "Variational iteration method for one dimensional nonlinear thermoelasticity", Chaos, Solitons and Fractals, 32(1), 145-149. https://doi.org/10.1016/j.chaos.2005.11.028.
  76. Timoshenko, SP, Gere, JM. (1964), Theory of Elastic Stability, McGraw Hill, New York, USA.
  77. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A., Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  78. Xu, L. (2007), "Variational iteration method for solving integral equations", Comput. Math. Appl., 54, 1071-1078. https://doi.org/10.1016/j.camwa.2006.12.053.

피인용 문헌

  1. Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.593