DOI QR코드

DOI QR Code

Electrognostic findings of Guillain-Barré syndrome

  • Yoon, Byeol-A (Department of Neurology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine) ;
  • Bae, Jong Seok (Department of Neurology, Hallym University College of Medicine) ;
  • Kim, Jong Kuk (Department of Neurology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine)
  • Received : 2019.11.26
  • Accepted : 2020.03.06
  • Published : 2020.04.30

Abstract

The electrodiagnostic findings in Guillain-Barré syndrome (GBS) play important roles in both understanding its pathophysiology and its diagnosis. Only demyelinating neuropathies were thought to be present when GBS patients were first diagnosed in Western countries, but the concept changed when many axonal GBS patients were reported in Asia. Reversible conduction failure was subsequently revealed, and it was recognized as a pathophysiologic continuum of axonal GBS. Thus, the electrodiagnostic findings in GBS have had a profound effect on the history of this disease.

Keywords

References

  1. Asbury AK, Cornblath DR. Assessment of current diagnostic criteria for Guillain-Barre syndrome. Ann Neurol 1990;27 Suppl:S21-S24. https://doi.org/10.1002/ana.410270707
  2. Hadden RD, Cornblath DR, Hughes RA, Zielasek J, Hartung HP, et al. Electrophysiological classification of Guillain-Barre syndrome: clinical associations and outcome. Plasma Exchange/Sandoglobulin Guillain-Barre Syndrome Trial Group. Ann Neurol 1998;44:780-788. https://doi.org/10.1002/ana.410440512
  3. Wiederholt WC, Mulder DW, Lambert EH. The Landry-Guillain-Barre-Strohl syndrome or polyradiculoneuropathy: historical review, report on 97 patients, and present concepts. Mayo Clin Proc 1964;39:427-451.
  4. Albers JW, Donofrio PD, McGonagle TK. Sequential electrodiagnostic abnormalities in acute inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve 1985;8:528-539. https://doi.org/10.1002/mus.880080609
  5. Goodfellow JA, Willison HJ. Guillain-Barre syndrome: a century of progress. Nat Rev Neurol 2016;12:723-731. https://doi.org/10.1038/nrneurol.2016.172
  6. Ho TW, Mishu B, Li CY, Gao CY, Cornblath DR, Griffin JW, et al. Guillain-Barre syndrome in northern China. Relationship to campylobacter jejuni infection and anti-glycolipid antibodies. Brain 1995;118(Pt 3):597-605. https://doi.org/10.1093/brain/118.3.597
  7. Feasby TE, Gilbert JJ, Brown WF, Bolton CF, Hahn AF, Koopman WF, et al. An acute axonal form of Guillain-Barre polyneuropathy. Brain 1986;109(Pt 6):1115-1126. https://doi.org/10.1093/brain/109.6.1115
  8. Kuwabara S, Yuki N. Axonal Guillain-Barre syndrome: concepts and controversies. Lancet Neurol 2013;12:1180-1188. https://doi.org/10.1016/S1474-4422(13)70215-1
  9. Luigetti M, Servidei S, Modoni A, Rossini PM, Sabatelli M, Monaco M. Admission neurophysiological abnormalities in Guillain-Barre syndrome: a single-center experience. Clin Neurol Neurosurg 2015;135:6-10. https://doi.org/10.1016/j.clineuro.2015.05.001
  10. Chanson JB, Echaniz-Laguna A. Early electrodiagnostic abnormalities in acute inflammatory demyelinating polyneuropathy: a retrospective study of 58 patients. Clin Neurophysiol 2014;125:1900-1905. https://doi.org/10.1016/j.clinph.2014.01.007
  11. Gordon PH, Wilbourn AJ. Early electrodiagnostic findings in Guillain-Barre syndrome. Arch Neurol 2001;58:913-917. https://doi.org/10.1001/archneur.58.6.913
  12. Vucic S, Cairns KD, Black KR, Chong PST, Cros D. Neurophysiologic findings in early acute inflammatory demyelinating polyradiculoneuropathy. Clin Neurophysiol 2004;115:2329-2335. https://doi.org/10.1016/j.clinph.2004.05.009
  13. McLeod JG. Electrophysiological studies in the Guillain-Barre syndrome. Ann Neurol 1981;9 Suppl:20-27. https://doi.org/10.1002/ana.410090705
  14. Ropper AH, Wijdicks EF, Shahani BT. Electrodiagnostic abnormalities in 113 consecutive patients with Guillain-Barre syndrome. Arch Neurol 1990;47:881-887. https://doi.org/10.1001/archneur.1990.00530080065012
  15. Asbury AK, Arnason BG, Karp HR, McFarlin DE. Criteria for diagnosis of Guillain-Barre syndrome. Ann Neurol 1978;3:565-566. https://doi.org/10.1002/ana.410030628
  16. Kanda T, Yamawaki M, Mizusawa H. Sera from Guillain-Barre patients enhance leakage in blood-nerve barrier model. Neurology 2003;60:301-306. https://doi.org/10.1212/01.WNL.0000041494.70178.17
  17. Kuwabara S, Ogawara K, Mizobuchi K, Koga M, Mori M, Hattori T, et al. Isolated absence of F waves and proximal axonal dysfunction in Guillain-Barre syndrome with antiganglioside antibodies. J Neurol Neurosurg Psychiatry 2000;68:191-195. https://doi.org/10.1136/jnnp.68.2.191
  18. Uncini A, Kuwabara S. Electrodiagnostic criteria for Guillain-Barre syndrome: a critical revision and the need for an update. Clin Neurophysiol 2012;123:1487-1495. https://doi.org/10.1016/j.clinph.2012.01.025
  19. Cornblath DR. Electrophysiology in Guillain-Barre syndrome. Ann Neurol 1990;27 Suppl:S17-S20. https://doi.org/10.1002/ana.410270706
  20. Kalita J, Misra UK, Das M. Neurophysiological criteria in the diagnosis of different clinical types of Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry 2008;79:289-293. https://doi.org/10.1136/jnnp.2007.118000
  21. McKhann GM, Cornblath DR, Griffin JW, Ho TW, Li CY, Jiang Z, et al. Acute motor axonal neuropathy: a frequent cause of acute flaccid paralysis in China. Ann Neurol 1993;33:333-342. https://doi.org/10.1002/ana.410330402
  22. Capasso M, Caporale CM, Pomilio F, Gandolfi P, Lugaresi A, Uncini A. Acute motor conduction block neuropathy another Guillain-Barre syndrome variant. Neurology 2003;61:617-622. https://doi.org/10.1212/WNL.61.5.617
  23. Kuwabara S, Yuki N, Koga M, Hattori T, Matsuura D, Miyake M, et al. IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain-Barre syndrome. Ann Neurol 1998;44:202-208. https://doi.org/10.1002/ana.410440210
  24. Hafer-Macko C, Hsieh ST, Li CY, Ho TW, Sheikh K, Cornblath DR, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 1996;40:635-644. https://doi.org/10.1002/ana.410400414
  25. Rajabally YA, Durand MC, Mitchell J, Orlikowski D, Nicolas G. Electrophysiological diagnosis of Guillain-Barre syndrome subtype: could a single study suffice? J Neurol Neurosurg Psychiatry 2015;86:115-119. https://doi.org/10.1136/jnnp-2014-307815
  26. Uncini A, Zappasodi F, Notturno F. Electrodiagnosis of GBS subtypes by a single study: not yet the squaring of the circle. J Neurol Neurosurg Psychiatry 2015;86:5-8. https://doi.org/10.1136/jnnp-2014-308220
  27. Uncini A, Ippoliti L, Shahrizaila N, Sekiguchi Y, Kuwabara S. Optimizing the electrodiagnostic accuracy in Guillain-Barre syndrome subtypes: criteria sets and sparse linear discriminant analysis. Clin Neurophysiol 2017;128:1176-1183. https://doi.org/10.1016/j.clinph.2017.03.048
  28. Shahrizaila N, Goh KJ, Abdullah S, Kuppusamy R, Yuki N. Two sets of nerve conduction studies may suffice in reaching a reliable electrodiagnosis in Guillain-Barre syndrome. Clin Neurophysiol 2013;124:1456-1459. https://doi.org/10.1016/j.clinph.2012.12.047

Cited by

  1. Sequential Nerve Conduction Studies in Guillain-Barre Syndrome: Is it Worth the Efforts? vol.69, pp.2, 2020, https://doi.org/10.4103/0028-3886.314554
  2. Invited Commentary - SARS-COV-2-Associated Guillain-Barré Syndrome Requires Appropriate Exclusion of Possible Differentials vol.61, pp.6, 2020, https://doi.org/10.1016/j.jemermed.2021.07.068