DOI QR코드

DOI QR Code

Aeroelastic Tailoring of a Forward-Swept Wing Using One-dimensional Beam Analysis

1차원 보 해석을 활용한 전진익 항공기의 복합적층 날개 공력탄성학적 테일러링

  • Choi, JaeWon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lim, ByeongUk (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, SiHun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Shin, SangJoon (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2020.03.13
  • Accepted : 2020.06.26
  • Published : 2020.08.01

Abstract

Foward-swept wings are known to possess superior aerodynamic performance compared to the conventional straight wings. However major concerns regarding forward-swept wings include divergence at lower airspeeds which require careful consideration at the design stage. As an endeavor to overcome such drawbacks, aeroelastic tailoring is attempted. In order to find an optimal ply sequence, recursive aeroelastic analyses is conducted and one-dimensional beam analysis coupled with simple aerodynamics is used for the improved computational efficiency and modelling convenience. The analysis used in this paper, DYMORE and analytic formula, both use one-dimensional beam model for the structure. Cross-sectional analysis for multi-cell NACA0015 airfoil section is conducted using VABS and oblique function is used for the sweep angle. Throughout the present aeroelastic tailoring, the maximum divergence speed of 290.2m/s is achieved which is increased by approximately 43% than that for the conventional ply configuration.

전진익 항공기는 평익 항공기와 비교하였을 때 우월한 공력 특성을 갖고 있다. 그러나 전진익 항공기는 종래의 주익에 비하여 낮은 발산 속도를 갖고 있게 되고, 이는 설계 단계에서 필수적으로 고려하여야 한다. 이러한 문제를 해결하기 위하여 공력탄성학적 테일러링에 대한 연구가 이루어졌다. 적층 판의 최적의 적층 배열을 찾기 위해선 반복적인 계산이 필요하고 이를 위하여 모델링이 용이하고 계산 효율성이 우수한 1차원 보 축소 해석을 수행한다. 해석을 위하여 다물체 동역학 프로그램인 DYMORE를 사용하였고 이를 해석해와 비교하였다. 또한 NACA0015 형상의 다중 셀 구조 단면을 해석하기 위하여 상용 프로그램 VABS를 사용하였고 전진익 항공기의 날개를 보다 현실적으로 해석하기 위하여 oblique 기능을 사용하였다. 공력탄성학적 테일러링을 통하여 얻은 최적의 발산 속도는 238.9m/s이고 이는 기존에 동일 중량, 단일 방향으로 적층한 날개에 비하여 42% 가량 개선된 수치이다. 하지만 공력탄성학적 테일러링이 부주의하게 적용할 경우 기존 단일 적층 날개에 비하여 오히려 감소된 발산 속도를 가질 수 있음을 확인하였다.

Keywords

References

  1. Diederich, F. W. and Burdiansky, B., "Divergence of Swept Wings," NACA TN 1680, 1948.
  2. Krone, N. J. Jr., "Divergence Elimination with Advanced Composites," AIAA Paper75-1009, 1975.
  3. Weisshaar, T. A., "Divergence of Forward Swept Composite Wings," Journal of Aircraft, Vol. 17, June 1980, pp. 442-448. https://doi.org/10.2514/3.57922
  4. Weisshaar, T. A., "Aeroelastic Tailoring of Forward Swept Composite Wings," Journal of Aircraft, Vol. 18, 1981, pp. 669-676. https://doi.org/10.2514/3.57542
  5. Lottati, I., "Flutter and Divergence Aeroelastic Characteristics for Composite Forward Swept Cantilevered Wing," Journal of Aircraft, Vol. 22, No. 11, 1985, pp. 1001-1007. https://doi.org/10.2514/3.45238
  6. Cole, S., "Divergence Study of a High-Aspect Ratio, Forward-Swept Wing," Journal of Aircraft, Vol. 25, No. 5, 1988, pp. 478-480. https://doi.org/10.2514/3.45609
  7. Xue, R., Ye, Zh., Ye, Kun., et al., "Composite material structure optimization design and aeroelastic analysis on forward swept wing," Proceeding of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 233, No. 13, 2019, pp. 4679-4695. https://doi.org/10.1177/0954410018807810
  8. Dillinger, J., Abdalla, M. M., Meddaikar, Y. M. and Klimmek, T., "Static aeroelastic stiffness optimization of a forward swept composite wing with CFD-corrected aero loads," An Official Journal of the Council of European Aerospace Societies Aeronautical Journal, Vol. 10, 2019, pp. 1015-1032.
  9. Yoon, N. K. and Shin, S. J., "Static Aeroelastic Analysis upon a Composite Main Wing," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2011, pp. 1183-1187.
  10. Lee, H. K. and Hwang, C. H., "Aeroelastic Tailoring of a Composite Plate Wing by Optimization Theory," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 19, No. 1, 1991, pp. 23-32.
  11. Bauchau, O. A., "DYMORE Users' Manual," School of Aerospace Engineering, Georgia Institute of Technology, Atlanta.
  12. Diederich, F. W., "A Plane-Form Parameter for Correlating Certain Aerodynamic Characteristics of Swept Wings," NACA TN-2335, 1951.
  13. Cesnik, C. E. S. and Hodges, D. H., "VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling," Journal of the American Helicopter Society, Vol. 42, 1997, pp. 27-38. https://doi.org/10.4050/JAHS.42.27
  14. Yu, W. and Hodges, D. H., "Generalized Timoshenko Theory of the Variational Asymptotic Beam Sectional Analysis," Journal of the American Helicopter Society, Vol. 50, No. 1, January, 2005, pp. 46-55. https://doi.org/10.4050/1.3092842
  15. Yu, W., Hodges, D. H., Volovoi, V. and Cesnik, C. E. S., "Timoshenko-like Modeling of Initially Curved and Twisted Composite Beams," International Journal of Solids and Structures, Vol 39, No. 19, pp. 5101-5121. https://doi.org/10.1016/S0020-7683(02)00399-2
  16. Bauchau, O. A., Flexible Multibody Dynamics, Springer, Dordrecht, Heidelberg, London, New York, pp. 551-536.