DOI QR코드

DOI QR Code

Overview of MgB2 superconducting conductors at Sam Dong in Korea

  • Received : 2020.05.11
  • Accepted : 2020.06.06
  • Published : 2020.06.30

Abstract

Sam Dong Co., Ltd. has been succeeded in producing a 1 km multi-filament conductor in 2018. So far, we become more widespread to fabricate a variety of customized multi-filament wires such as 6 + '1' Cu, 18 + '1' Cu, and 36 + '1' Cu. In this work, we discuss the research progress on various MgB2 wires over the past three years. We also provide a brief review for applications with our wires.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature, vol. 410, pp. 63-64, 2001. https://doi.org/10.1038/35065039
  2. M. Tomsic, M. Rindfleisch, J. Yue, K. McFadden, D. Doll, J. Phillips, M. D. Sumption, M. Bhatia, S. Bohnenstiehl, and E. W. Collings, "Development of magnesium diboride ($MgB_2$) wires and magnets using in situ strand fabrication method," Physica C, vol. 456, pp. 203-208, 2007. https://doi.org/10.1016/j.physc.2007.01.009
  3. A. Ballarino, C. E. Bruzek, N. Dittmar, S. Giannelli, W. Goldacker, G. Grasso, F. Grilli, C. Haberstroh, S. Hole, F. Lesur, A. Marian, J. M. Martiez-Val, L. Martini, C. Rubbia, D. Salmieri, F. Schmidt, and M. Tropeano, "The BEST PATHS project on $MgB_2$ superconducting cables for very high power transmission," IEEE Trans. Appl. Supercond., vol. 26, pp. 5401705, 2016.
  4. Y. Iwasa, "Towards liquid-helium-free, persistent-mode $MgB_2$ MRI magnets: FBML experience," Supercond. Sci. Technol., vol. 30, pp. 053001, 2017. https://doi.org/10.1088/1361-6668/aa5fed
  5. T. Machi, S. Shimura, N. Koshizuka, and M. Murakami, "Fabrication of $MgB_2$ superconducting wire by in situ PIT method," Physica C, vol. 392, pp. 1039-1042, 2003. https://doi.org/10.1016/S0921-4534(03)01160-2
  6. D. Patel, M. Hossain, A. Motaman, S. Barua, M. Shahabuddin, and J. H. Kim, "Rational design of $MgB_2$ conductors toward practical applications," Cryogenics, vol. 63, pp. 160-165, 2014. https://doi.org/10.1016/j.cryogenics.2014.04.016
  7. A. Gumbel, J. Eckert, G. Fuchs, K. Nenkov, K.-H. Muller, and L. Schultz, "Improved superconducting properties in nanocrystalline bulk $MgB_2$," Appl. Phys. Lett., vol. 80, pp. 2725-2727, 2002. https://doi.org/10.1063/1.1469654
  8. M. Herrmann, W. Haessler, C. Rodig, W. Gruner, B. Holzapfel, and L. Schultz, "Touching the properties of NbTi by carbon doped tapes with mechanically alloyed $MgB_2$," Appl. Phys. Lett., vol. 91, pp. 082507, 2007. https://doi.org/10.1063/1.2773942
  9. M. Takahashi1 and H. Kumakura, "Improvement of the Jc-B property of $MgB_2$ tapes using the Taguchi method," Supercond. Sci. Technol., vol. 25, pp. 115021, 2012. https://doi.org/10.1088/0953-2048/25/11/115021
  10. J. H. Kim, S. X. Dou, S. Oh, M. Jercinovic, E. Babic, T. Nakane, and H. Kumakura, "Correlation between doping induced disorder and superconducting properties in carbohydrate doped $MgB_2$," Appl. Phys. Lett., vol. 104, pp. 063911, 2008.
  11. M. Eisterer, "Magnetic properties and critical currents of $MgB_2$," Supercond. Sci. Technol., vol. 20, pp. R47-R73, 2007. https://doi.org/10.1088/0953-2048/20/12/R01
  12. J. H. Choi, D. G. Lee, J. H. Jeon, E. J. Lee, M. Maeda and S. Choi, "Customized $MgB_2$ Superconducting Wire Toward Practical Applications at Sam Dong in Korea," J. Supercond. Nov. Magn., vol. 32, pp. 1219-1223, 2019. https://doi.org/10.1007/s10948-018-4814-5
  13. www.samdongkorea.com
  14. D. Sha, G. Yan, L. Zhou, J. S. Li, C. S. Li, Q. Y. Wang, X. M. Xiong, and G. F. Jiao, "Multifilamentary $MgB_2$ wires fracture behavior during the drawing process," Physica C, vol. 483, pp. 17-20, 2012 https://doi.org/10.1016/j.physc.2012.06.007
  15. P. Mikheenko, E. Martinez, A. Bevan, J. S. Abell, and J. L. MacManus-Driscoll, "Grain boundaries and pinning in bulk $MgB_2$," Supercond. Sci. Technol., vol. 20, pp. S264-S270, 2007. https://doi.org/10.1088/0953-2048/20/9/S22
  16. M. D. Sumption, M. Bhatia, X. Wu, M. Rindfleisch, M. Tomsic and E. W. Collings, "Multifilamentary, in situ route, Cu-stabilized $MgB_2$ strands," Supercond. Sci. Technol., vol. 18, pp. 730-734, 2005. https://doi.org/10.1088/0953-2048/18/5/026
  17. M. D. Sumption, M. Bhatia, M. Rindfleisch, M. Tomsic and E. W. Collings, "Transport properties of multifilamentary, in situ route, Cu-stabilized $MgB_2$ strands: one metre segments and the $J_c$(B, T) dependence of short samples," Supercond. Sci. Technol., vol. 19, pp. 155-160, 2006. https://doi.org/10.1088/0953-2048/19/2/001
  18. A. V. Pan, S. Zhou, H. Liu and S. Dou, "Properties of superconducting $MgB_2$ wires: in situ versus ex situ reaction technique," Supercond. Sci. Technol., vol. 16, pp. 639-644, 2003. https://doi.org/10.1088/0953-2048/16/5/317
  19. S. Jin, H. Mavoori, C. Bower, and R. B. van Dover, "High critical currents in iron-clad superconducting $MgB_2$ wires," Nature, vol. 411, pp. 563-565, 2001. https://doi.org/10.1038/35079030
  20. J. H. Kim, X. Xu, M. S. A. Hossain, D. Q. Shi, Y. Zhao, X. L. Wang, S. X. Dou, S. Choi, and T. Kiyoshi, "Influence of disorder on the infield $J_c$ of $MgB_2$ wires using highly active pyrene," Appl. Phys. Lett., vol. 92, pp. 042506, 2008. https://doi.org/10.1063/1.2838756
  21. K. Salama, Y. X. Zhou, M. Hanna, M. Alessandrini, P. T. Putman and H. Fang, "Electromechanical properties of superconducting $MgB_2$ wire," Supercond. Sci. Technol., vol. 18, pp. s369-s372, 2005. https://doi.org/10.1088/0953-2048/18/12/024