DOI QR코드

DOI QR Code

Drug selection for sedation and general anesthesia in children undergoing ambulatory magnetic resonance imaging

  • Jung, Sung Mee (Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine)
  • Received : 2020.03.16
  • Accepted : 2020.04.06
  • Published : 2020.07.31

Abstract

The demand for drug-induced sedation for magnetic resonance imaging (MRI) scans have substantially increased in response to increases in MRI utilization and growing interest in anxiety in children. Understanding the pharmacologic options for deep sedation and general anesthesia in an MRI environment is essential to achieve immobility for the successful completion of the procedure and ensure rapid and safe discharge of children undergoing ambulatory MRI. For painless diagnostic MRI, a single sedative/anesthetic agent without analgesia is safer than a combination of multiple sedatives. The traditional drugs, such as chloral hydrate, pentobarbital, midazolam, and ketamine, are still used due to the ease of administration despite low sedation success rate, prolonged recovery, and significant adverse events. Currently, dexmedetomidine, with respiratory drive preservation, and propofol, with high effectiveness and rapid recovery, are preferred for children undergoing ambulatory MRI. General anesthesia using propofol or sevoflurane can also provide predictable rapid time to readiness and scan times in infants or children with comorbidities. The selection of appropriate drugs as well as sufficient monitoring equipment are vital for effective and safe sedation and anesthesia for ambulatory pediatric MRI.

Keywords

References

  1. Uffman JC, Tumin D, Raman V, Thung A, Adler B, Tobias JD. MRI utilization and the associated use of sedation and anesthesia in a pediatric ACO. J Am Coll Radiol 2017;14:924-30. https://doi.org/10.1016/j.jacr.2017.01.025
  2. Wachtel RE, Dexter F, Dow AJ. Growth rates in pediatric diagnostic imaging and sedation. Anesth Analg 2009;108:1616-21. https://doi.org/10.1213/ane.0b013e3181981f96
  3. Dial S, Silver P, Bock K, Sagy M. Pediatric sedation for procedures titrated to a desired degree of immobility results in unpredictable depth of sedation. Pediatr Emerg Care 2001;17:414-20. https://doi.org/10.1097/00006565-200112000-00004
  4. Kaila R, Chen X, Kannikeswaran N. Postdischarge adverse events related to sedation for diagnostic imaging in children. Pediatr Emerg Care 2012;28:796-801. https://doi.org/10.1097/PEC.0b013e3182628829
  5. Committee on Quality Management and Departmental Administration. Continuum of depth of sedation: definition of general anesthesia and levels of sedation/analgesia [Internet]. Schaumburg, IL: American Society of Anesthesiologists; 2019 [cited 2020 Mar 20]. https://www.asahq.org/standards-and-guidelines/continuum-of-depth-of-sedation-definition-of-general-anesthesia-and-levels-of-sedationanalgesia.
  6. Cote CJ, Wilson S; American Academy of Pediatrics; American Academy of Pediatric Dentistry. Guidelines for monitoring and management of pediatric patients before, during, and after sedation for diagnostic and therapeutic procedures. Pediatrics 2019;143:e20191000. https://doi.org/10.1542/peds.2019-1000
  7. Nedoma J, Fajkus M, Martinek R, Nazeran H. Vital sign monitoring and cardiac triggering at 1.5 tesla: a practical solution by an MR-ballistocardiography fiber-optic sensor. Sensors (Basel) 2019;19:470. https://doi.org/10.3390/s19030470
  8. Kamat PP, McCracken CE, Gillespie SE, Fortenberry JD, Stockwell JA, Cravero JP, et al. Pediatric critical care physician-administered procedural sedation using propofol: a report from the Pediatric Sedation Research Consortium Database. Pediatr Crit Care Med 2015;16:11-20. https://doi.org/10.1097/PCC.0000000000000273
  9. Sanborn PA, Michna E, Zurakowski D, Burrows PE, Fontaine PJ, Connor L, et al. Adverse cardiovascular and respiratory events during sedation of pediatric patients for imaging examinations. Radiology 2005;237:288-94. https://doi.org/10.1148/radiol.2371041415
  10. Mayers DJ, Hindmarsh KW, Sankaran K, Gorecki DK, Kasian GF. Chloral hydrate disposition following single-dose administration to critically ill neonates and children. Dev Pharmacol Ther 1991;16:71-7. https://doi.org/10.1159/000480561
  11. Litman RS, Soin K, Salam A. Chloral hydrate sedation in term and preterm infants: an analysis of efficacy and complications. Anesth Analg 2010;110:739-46. https://doi.org/10.1213/ane.0b013e3181ca12a8
  12. Ratnapalan S. Chloral hydrate sedation in children. Clin Pediatr (Phila) 2014;53:933-6. https://doi.org/10.1177/0009922813508000
  13. National Institute for Health and Care Excellence (NICE). Sedation in under 19s: using sedation for diagnostic and therapeutic procedures (Clinical guideline CG112) [Internet]. London (UK): NICE; 2010 [cited 2020 Mar 20]. https://www.nice.org.uk/guidance/cg112.
  14. Low E, O'Driscoll M, MacEneaney P, O'Mahony O. Sedation with oral chloral hydrate in children undergoing MRI scanning. Ir Med J 2008;101:80-2.
  15. Lee YJ, Kim DK, Kwak YH, Kim HB, Park JH, Jung JH. Analysis of the appropriate age and weight for pediatric patient sedation for magnetic resonance imaging. Am J Emerg Med 2012;30:1189-95. https://doi.org/10.1016/j.ajem.2012.01.009
  16. Malviya S, Voepel-Lewis T, Tait AR, Reynolds PI, Gujar SK, Gebarski SS, et al. Pentobarbital vs chloral hydrate for sedation of children undergoing MRI: efficacy and recovery characteristics. Paediatr Anaesth 2004;14:589-95. https://doi.org/10.1111/j.1460-9592.2004.01243.x
  17. Dalal PG, Murray D, Cox T, McAllister J, Snider R. Sedation and anesthesia protocols used for magnetic resonance imaging studies in infants: provider and pharmacologic considerations. Anesth Analg 2006;103:863-8. https://doi.org/10.1213/01.ane.0000237311.15294.0e
  18. Cortellazzi P, Lamperti M, Minati L, Falcone C, Pantaleoni C, Caldiroli D. Sedation of neurologically impaired children undergoing MRI: a sequential approach. Paediatr Anaesth 2007;17:630-6. https://doi.org/10.1111/j.1460-9592.2006.02178.x
  19. Delgado J, Toro R, Rascovsky S, Arango A, Angel GJ, Calvo V, et al. Chloral hydrate in pediatric magnetic resonance imaging: evaluation of a 10-year sedation experience administered by radiologists. Pediatr Radiol 2015;45:108-14. https://doi.org/10.1007/s00247-014-3091-0
  20. Greenberg SB, Faerber EN, Aspinall CL, Adams RC. High-dose chloral hydrate sedation for children undergoing MR imaging: safety and efficacy in relation to age. AJR Am J Roentgenol 1993;161:639-41. https://doi.org/10.2214/ajr.161.3.8352124
  21. Finnemore A, Toulmin H, Merchant N, Arichi T, Tusor N, Cox D, et al. Chloral hydrate sedation for magnetic resonance imaging in newborn infants. Paediatr Anaesth 2014;24:190-5. https://doi.org/10.1111/pan.12264
  22. Mace SE, Brown LA, Francis L, Godwin SA, Hahn SA, Howard PK, et al. Clinical policy: critical issues in the sedation of pediatric patients in the emergency department. Ann Emerg Med 2008;51:378-99. https://doi.org/10.1016/j.annemergmed.2007.11.001
  23. Lipshitz M, Marino BL, Sanders ST. Chloral hydrate side effects in young children: causes and management. Heart Lung 1993;22:408-14.
  24. Schulte-Uentrop L, Goepfert MS. Anaesthesia or sedation for MRI in children. Curr Opin Anaesthesiol 2010;23:513-7. https://doi.org/10.1097/ACO.0b013e32833bb524
  25. Ehrnebo M. Pharmacokinetics and distribution properties of pentobarbital in humans following oral and intravenous administration. J Pharm Sci 1974;63:1114-8. https://doi.org/10.1002/jps.2600630717
  26. Mason KP, Zurakowski D, Connor L, Karian VE, Fontaine PJ, Sanborn PA, et al. Infant sedation for MR imaging and CT: oral versus intravenous pentobarbital. Radiology 2004;233:723-8. https://doi.org/10.1148/radiol.2333031872
  27. Mallory MD, Baxter AL, Kost SI; Pediatric Sedation Research Consortium. Propofol vs pentobarbital for sedation of children undergoing magnetic resonance imaging: results from the Pediatric Sedation Research Consortium. Paediatr Anaesth 2009;19:601-11. https://doi.org/10.1111/j.1460-9592.2009.03023.x
  28. Greenberg SB, Adams RC, Aspinall CL. Initial experience with intravenous pentobarbital sedation for children undergoing MRI at a tertiary care pediatric hospital: the learning curve. Pediatr Radiol 2000;30:689-91. https://doi.org/10.1007/s002470000304
  29. Mason KP, Sanborn P, Zurakowski D, Karian VE, Connor L, Fontaine PJ, et al. Superiority of pentobarbital versus chloral hydrate for sedation in infants during imaging. Radiology 2004;230:537-42. https://doi.org/10.1148/radiol.2302030107
  30. Schlatter J, Kabiche S, Sellier N, Fontan JE. Oral pentobarbital suspension for children sedation during MR imaging. Ann Pharm Fr 2018;76:286-90. https://doi.org/10.1016/j.pharma.2018.03.002
  31. Rooks VJ, Chung T, Connor L, Zurakowski D, Hoffer FA, Mason KP, et al. Comparison of oral pentobarbital sodium (nembutal) and oral chloral hydrate for sedation of infants during radiologic imaging: preliminary results. AJR Am J Roentgenol 2003;180:1125-8. https://doi.org/10.2214/ajr.180.4.1801125
  32. Ross AK, Hazlett HC, Garrett NT, Wilkerson C, Piven J. Moderate sedation for MRI in young children with autism. Pediatr Radiol 2005;35:867-71. https://doi.org/10.1007/s00247-005-1499-2
  33. Kannikeswaran N, Chen X, Sethuraman U. Utility of endtidal carbon dioxide monitoring in detection of hypoxia during sedation for brain magnetic resonance imaging in children with developmental disabilities. Paediatr Anaesth 2011;21:1241-6. https://doi.org/10.1111/j.1460-9592.2011.03660.x
  34. Boriosi JP, Eickhoff JC, Hollman GA. Safety and efficacy of buccal dexmedetomidine for MRI sedation in school-aged children. Hosp Pediatr 2019;9:348-54. https://doi.org/10.1542/hpeds.2018-0162
  35. Sulton C, Kamat P, Mallory M, Reynolds J. The use of intranasal dexmedetomidine and midazolam for sedated magnetic resonance imaging in children: a report from the Pediatric Sedation Research Consortium. Pediatr Emerg Care 2020;36:138-42. https://doi.org/10.1097/pec.0000000000001199
  36. Ibrahim M. A prospective, randomized, double blinded comparison of intranasal dexmedetomodine vs intranasal ketamine in combination with intravenous midazolam for procedural sedation in school aged children undergoing MRI. Anesth Essays Res 2014;8:179-86. https://doi.org/10.4103/0259-1162.134495
  37. Pershad J, Wan J, Anghelescu DL. Comparison of propofol with pentobarbital/midazolam/fentanyl sedation for magnetic resonance imaging of the brain in children. Pediatrics 2007;120:e629-36. https://doi.org/10.1542/peds.2006-3108
  38. D'Agostino J, Terndrup TE. Chloral hydrate versus midazolam for sedation of children for neuroimaging: a randomized clinical trial. Pediatr Emerg Care 2000;16:1-4. https://doi.org/10.1097/00006565-200002000-00001
  39. Rupprecht T, Kuth R, Bowing B, Gerling S, Wagner M, Rascher W. Sedation and monitoring of paediatric patients undergoing open low-field MRI. Acta Paediatr 2000;89:1077-81. https://doi.org/10.1080/713794566
  40. Mazurek MS. Sedation and analgesia for procedures outside the operating room. Semin Pediatr Surg 2004;13:166-73. https://doi.org/10.1053/j.sempedsurg.2004.04.009
  41. Shannon M, Albers G, Burkhart K, Liebelt E, Kelley M, McCubbin MM, et al. Safety and efficacy of flumazenil in the reversal of benzodiazepine-induced conscious sedation. The Flumazenil Pediatric Study Group. J Pediatr 1997;131:582-6. https://doi.org/10.1016/S0022-3476(97)70066-0
  42. White PF, Way WL, Trevor AJ. Ketamine: its pharmacology and therapeutic uses. Anesthesiology 1982;56:119-36. https://doi.org/10.1097/00000542-198202000-00007
  43. Kim JG, Lee HB, Jeon SB. Combination of dexmedetomidine and ketamine for magnetic resonance imaging sedation. Front Neurol 2019;10:416. https://doi.org/10.3389/fneur.2019.00416
  44. Tomatir E, Atalay H, Gurses E, Erbay H, Bozkurt P. Effects of low dose ketamine before induction on propofol anesthesia for pediatric magnetic resonance imaging. Paediatr Anaesth 2004;14:845-50. https://doi.org/10.1111/j.1460-9592.2004.01303.x
  45. Schmitz A, Weiss M, Kellenberger C, O'Gorman Tuura R, Klaghofer R, Scheer I, et al. Sedation for magnetic resonance imaging using propofol with or without ketamine at induction in pediatrics: a prospective randomized double-blinded study. Paediatr Anaesth 2018;28:264-74. https://doi.org/10.1111/pan.13315
  46. Mahmoud M, Mason KP. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br J Anaesth 2015;115:171-82. https://doi.org/10.1093/bja/aev226
  47. Mahmoud M, Gunter J, Donnelly LF, Wang Y, Nick TG, Sadhasivam S. A comparison of dexmedetomidine with propofol for magnetic resonance imaging sleep studies in children. Anesth Analg 2009;109:745-53. https://doi.org/10.1213/ane.0b013e3181adc506
  48. Sriganesh K, Saini J, Theerth K, Venkataramaiah S. Airway dimensions in children with neurological disabilities during dexmedetomidine and propofol sedation for magnetic resonance imaging study. Turk J Anaesthesiol Reanim 2018;46:214-21.
  49. Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology 1992;77:1134-42. https://doi.org/10.1097/00000542-199212000-00014
  50. Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 2002;283:R287-95. https://doi.org/10.1152/ajpregu.00123.2002
  51. Mason KP, Turner DP, Houle TT, Fontaine PJ, Lerman J. Hemodynamic response to fluid management in children undergoing dexmedetomidine sedation for MRI. AJR Am J Roentgenol 2014;202:W574-9. https://doi.org/10.2214/AJR.13.11580
  52. Mason KP, Zgleszewski S, Forman RE, Stark C, DiNardo JA. An exaggerated hypertensive response to glycopyrrolate therapy for bradycardia associated with high-dose dexmedetomidine. Anesth Analg 2009;108:906-8. https://doi.org/10.1213/ane.0b013e3181948a6f
  53. Mason KP, Zurakowski D, Zgleszewski SE, Robson CD, Carrier M, Hickey PR, et al. High dose dexmedetomidine as the sole sedative for pediatric MRI. Paediatr Anaesth 2008;18:403-11. https://doi.org/10.1111/j.1460-9592.2008.02468.x
  54. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology 2000;93:382-94. https://doi.org/10.1097/00000542-200008000-00016
  55. Boriosi JP, Eickhoff JC, Hollman GA. Safety and efficacy of buccal dexmedetomidine for MRI sedation in school-aged children. Hosp Pediatr 2019;9:348-54. https://doi.org/10.1542/hpeds.2018-0162
  56. Tug A, Hanci A, Turk HS, Aybey F, Isil CT, Sayin P, et al. Comparison of two different intranasal doses of dexmedetomidine in children for magnetic resonance imaging sedation. Paediatr Drugs 2015;17:479-85. https://doi.org/10.1007/s40272-015-0145-1
  57. Teshome G, Belani K, Braun JL, Constantine DR, Gattu RK, Lichenstein R. Comparison of dexmedetomidine with pentobarbital for pediatric MRI sedation. Hosp Pediatr 2014;4:360-5. https://doi.org/10.1542/hpeds.2013-0111
  58. Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology 1992;77:1125-33. https://doi.org/10.1097/00000542-199212000-00013
  59. Konig MW, Mahmoud MA, Fujiwara H, Hemasilpin N, Lee KH, Rose DF. Influence of anesthetic management on quality of magnetoencephalography scan data in pediatric patients: a case series. Paediatr Anaesth 2009;19:507-12. https://doi.org/10.1111/j.1460-9592.2009.02983.x
  60. Roback MG, Carlson DW, Babl FE, Kennedy RM. Update on pharmacological management of procedural sedation for children. Curr Opin Anaesthesiol 2016;29(Suppl 1):S21-35. https://doi.org/10.1097/ACO.0000000000000316
  61. Machata AM, Willschke H, Kabon B, Kettner SC, Marhofer P. Propofol-based sedation regimen for infants and children undergoing ambulatory magnetic resonance imaging. Br J Anaesth 2008;101:239-43. https://doi.org/10.1093/bja/aen153
  62. Gutmann A, Pessenbacher K, Gschanes A, Eggenreich U, Wargenau M, Toller W. Propofol anesthesia in spontaneously breathing children undergoing magnetic resonance imaging: comparison of two propofol emulsions. Paediatr Anaesth 2006;16:266-74. https://doi.org/10.1111/j.1460-9592.2005.01777.x
  63. Cho JE, Kim WO, Chang DJ, Choi EM, Oh SY, Kil HK. Titrated propofol induction vs. continuous infusion in children undergoing magnetic resonance imaging. Acta Anaesthesiol Scand 2010;54:453-7. https://doi.org/10.1111/j.1399-6576.2009.02169.x
  64. Hassan NE, Betz BW, Cole MR, Wincek J, Reischman D, Sanfilippo DJ, et al. Randomized controlled trial for intermittent versus continuous propofol sedation for pediatric brain and spine magnetic resonance imaging studies. Pediatr Crit Care Med 2011;12:e262-5. https://doi.org/10.1097/PCC.0b013e31820ab881
  65. Abdallah C, Hannallah R, Patel K. MR-compatible pumps versus manual titration of propofol for pediatric sedation. J Med Eng Technol 2010;34:443-7. https://doi.org/10.3109/03091902.2010.515286
  66. Zhou Q, Shen L, Zhang X, Li J, Tang Y. Dexmedetomidine versus propofol on the sedation of pediatric patients during magnetic resonance imaging (MRI) scanning: a meta-analysis of current studies. Oncotarget 2017;8:102468-73. https://doi.org/10.18632/oncotarget.22271
  67. Ahmed SS, Unland TL, Slaven JE, Nitu ME. Dexmedetomidine versus propofol: is one better than the other for MRI sedation in children? J Pediatr Intensive Care 2017;6:117-22. https://doi.org/10.1055/s-0036-1584683
  68. Fang H, Yang L, Wang X, Zhu H. Clinical efficacy of dexmedetomidine versus propofol in children undergoing magnetic resonance imaging: a meta-analysis. Int J Clin Exp Med 2015;8:11881-9.
  69. Wu J, Mahmoud M, Schmitt M, Hossain M, Kurth D. Comparison of propofol and dexmedetomedine techniques in children undergoing magnetic resonance imaging. Paediatr Anaesth 2014;24:813-8. https://doi.org/10.1111/pan.12408
  70. Bryan YF, Hoke LK, Taghon TA, Nick TG, Wang Y, Kennedy SM, et al. A randomized trial comparing sevoflurane and propofol in children undergoing MRI scans. Paediatr Anaesth 2009;19:672-81. https://doi.org/10.1111/j.1460-9592.2009.03048.x
  71. Mallory MD, Baxter AL, Yanosky DJ, Cravero JP; Pediatric Sedation Research Consortium. Emergency physician-administered propofol sedation: a report on 25,433 sedations from the pediatric sedation research consortium. Ann Emerg Med 2011;57:462-8. https://doi.org/10.1016/j.annemergmed.2011.03.008
  72. Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH; Pediatric Sedation Research Consortium. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth Analg 2009;108:795-804. https://doi.org/10.1213/ane.0b013e31818fc334
  73. Srinivasan M, Turmelle M, Depalma LM, Mao J, Carlson DW. Procedural sedation for diagnostic imaging in children by pediatric hospitalists using propofol: analysis of the nature, frequency, and predictors of adverse events and interventions. J Pediatr 2012;160:801-6. https://doi.org/10.1016/j.jpeds.2011.11.003
  74. Picard P, Tramer MR. Prevention of pain on injection with propofol: a equantitative systematic review. Anesth Analg 2000;90:963-9. https://doi.org/10.1213/00000539-200004000-00035
  75. Murphy A, Campbell DE, Baines D, Mehr S. Allergic reactions to propofol in egg-allergic children. Anesth Analg 2011;113:140-4. https://doi.org/10.1213/ane.0b013e31821b450f
  76. Kol IO, Egilmez H, Kaygusuz K, Gursoy S, Mimaroglu C. Open-label, prospective, randomized comparison of propofol and sevoflurane for laryngeal mask anesthesia for magnetic resonance imaging in pediatric patients. Clin Ther 2008;30:175-81. https://doi.org/10.1016/j.clinthera.2008.01.008
  77. Tsui BC, Wagner A, Usher AG, Cave DA, Tang C. Combined propofol and remifentanil intravenous anesthesia for pediatric patients undergoing magnetic resonance imaging. Paediatr Anaesth 2005;15:397-401. https://doi.org/10.1111/j.1460-9592.2005.01462.x
  78. Lutterbey G, Wattjes MP, Doerr D, Fischer NJ, Gieseke J Jr, Schild HH. Atelectasis in children undergoing either propofol infusion or positive pressure ventilation anesthesia for magnetic resonance imaging. Paediatr Anaesth 2007;17:121-5. https://doi.org/10.1111/j.1460-9592.2006.02045.x
  79. Sury MR, Harker H, Thomas ML. Sevoflurane sedation in infants undergoing MRI: a preliminary report. Paediatr Anaesth 2005;15:16-22. https://doi.org/10.1111/j.1460-9592.2005.01456.x
  80. De Sanctis Briggs V. Magnetic resonance imaging under sedation in newborns and infants: a study of 640 cases using sevoflurane. Paediatr Anaesth 2005;15:9-15. https://doi.org/10.1111/j.1460-9592.2005.01360.x
  81. Lei H, Chao L, Miao T, Shen Ling L, Yan Ying P, Xiao Han P, et al. Serious airway-related adverse events with sevoflurane anesthesia via facemask for magnetic resonance imaging in 7129 pediatric patients: a retrospective study. Paediatr Anaesth 2019;29:635-9. https://doi.org/10.1111/pan.13601
  82. Blitman NM, Lee HK, Jain VR, Vicencio AG, Girshin M, Haramati LB. Pulmonary atelectasis in children anesthetized for cardiothoracic MR: evaluation of risk factors. J Comput Assist Tomogr 2007;31:789-94. https://doi.org/10.1097/RCT.0b013e318033dec0
  83. Mongodi S, Ottonello G, Viggiano R, Borrelli P, Orcesi S, Pichiecchio A, et al. Ten-year experience with standardized non-operating room anesthesia with Sevoflurane for MRI in children affected by neuropsychiatric disorders. BMC Anesthesiol 2019;19:235. https://doi.org/10.1186/s12871-019-0897-1
  84. Schultheis LW, Mathis LL, Roca RA, Simone AF, Hertz SH, Rappaport BA. Pediatric drug development in anesthesiology: an FDA perspective. Anesth Analg 2006;103:49-51. https://doi.org/10.1213/01.ANE.0000228302.15293.DE
  85. Gore R, Chugh PK, Tripathi CD, Lhamo Y, Gautam S. Pediatric off-label and unlicensed drug use and its implications. Curr Clin Pharmacol 2017;12:18-25.

Cited by

  1. Artificial intelligence in paediatric radiology: Future opportunities vol.94, pp.1117, 2020, https://doi.org/10.1259/bjr.20200975