DOI QR코드

DOI QR Code

Current aspects and prospects of glass ionomer cements for clinical dentistry

  • Park, Eun Young (Department of Dentistry, Yeungnam University College of Medicine) ;
  • Kang, Sohee (Department of Dentistry, Yeungnam University Hospital)
  • Received : 2020.05.19
  • Accepted : 2020.06.15
  • Published : 2020.07.31

Abstract

Glass ionomer cement (GIC) is a tailor-made material that is used as a filling material in dentistry. GIC is cured by an acid-base reaction consisting of a glass filler and ionic polymers. When the glass filler and ionic polymers are mixed, ionic bonds of the material itself are formed. In addition, the extra polymer anion reacts with calcium in enamel or dentin to increase adhesion to the tooth tissue. GICs are widely used as adhesives for artificial crowns or orthodontic brackets, and are also used as tooth repair material, cavity liner, and filling materials. In this review, the current status of GIC research and development and its prospects for the future have been discussed in detail.

Keywords

References

  1. Mount GJ. An atlas of glass-ionomer cements: a clinician's guide. 2nd ed. Martin Dunitz: London; 2002.
  2. Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater 2016;7:16. https://doi.org/10.3390/jfb7030016
  3. Khoroushi M, Keshani F. A review of glass-ionomers: from conventional glass-ionomer to bioactive glass-ionomer. Dent Res J (Isfahan) 2013;10:411-20.
  4. Sidhu SK, Watson TF. Resin-modified glass ionomer materials: a status report for the American Journal of Dentistry. Am J Dent 1995;8:59-67.
  5. Wilson AD. Resin-modified glass-ionomer cements. Int J Prosthodont 1990;3:425-9.
  6. Nicholson JW. Polyacid-modified composite resins ("compomers") and their use in clinical dentistry. Dent Mater 2007;23:615-22. https://doi.org/10.1016/j.dental.2006.05.002
  7. Najeeb S, Khurshid Z, Zafar MS, Khan AS, Zohaib S, Marti JM, et al. Modifications in glass ionomer cements: nano-sized fillers and bioactive nanoceramics. Int J Mol Sci 2016;17:1134. https://doi.org/10.3390/ijms17071134
  8. De Caluwe T, Vercruysse CW, Ladik I, Convents R, Declercq H, Martens LC, et al. Addition of bioactive glass to glass ionomer cements: effect on the physico-chemical properties and biocompatibility. Dent Mater 2017;33:e186-203.
  9. Berg JH, Croll TP. Glass ionomer restorative cement systems: an update. Pediatr Dent 2015;37:116-24.
  10. Wilson AD, Kent BE. A new translucent cement for dentistry: the glass ionomer cement. Br Dent J 1972;132:133-5. https://doi.org/10.1038/sj.bdj.4802810
  11. Williams JA, Billington RW, Pearson GJ. The comparative strengths of commercial glass-ionomer cements with and without metal additions. Br Dent J 1992;172:279-82. https://doi.org/10.1038/sj.bdj.4807843
  12. Cho SY, Cheng AC. A review of glass ionomer restorations in the primary dentition. J Can Dent Assoc 1999;65:491-5.
  13. Frankenberger R, Sindel J, Kramer N. Viscous glass-ionomer cements: a new alternative to amalgam in the primary dentition? Quintessence Int 1997;28:667-76.
  14. Berg JH. The continuum of restorative materials in pediatric dentistry: a review for the clinician. Pediatr Dent 1998;20:93-100.
  15. Nicholson JW, Czarnecka B, Limanowska-Shaw H. The long-term interaction of dental cements with lactic acid solutions. J Mater Sci Mater Med 1999;10:449-52. https://doi.org/10.1023/A:1008991422909
  16. Mathis RS, Ferracane JL. Properties of a glass-ionomer/resin-composite hybrid material. Dent Mater 1989;5:355-8. https://doi.org/10.1016/0109-5641(89)90130-9
  17. Burgess J, Norling B, Summitt J. Resin ionomer restorative materials: the new generation. J Esthet Dent 1994;6:207-15. https://doi.org/10.1111/j.1708-8240.1994.tb00861.x
  18. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater 2000;16:129-38. https://doi.org/10.1016/S0109-5641(99)00093-7
  19. Nagaraja UP, Kishore G. Glass ionomer cement: The different generations. Trends Biomater Artif Organs 2005;18:158-65.
  20. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials: fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 2007;23:343-62. https://doi.org/10.1016/j.dental.2006.01.022
  21. Robertello FJ, Coffey JP, Lynde TA, King P. Fluoride release of glass ionomer-based luting cements in vitro. J Prosthet Dent 1999;82:172-6. https://doi.org/10.1016/S0022-3913(99)70152-6
  22. Tjandrawinata R, Irie M, Suzuki K. Marginal gap formation and fluoride release of resin-modified glass-ionomer cement: effect of silanized spherical silica filler addition. Dent Mater J 2004;23:305-13. https://doi.org/10.4012/dmj.23.305
  23. Musa A, Pearson GJ, Gelbier M. In vitro investigation of fluoride ion release from four resin-modified glass polyalkenoate cements. Biomaterials 1996;17:1019-23. https://doi.org/10.1016/0142-9612(96)84678-3
  24. Momoi Y, McCabe JF. Fluoride release from light-activated glass ionomer restorative cements. Dent Mater 1993;9:151-4. https://doi.org/10.1016/0109-5641(93)90112-4
  25. Attar N, Turgut MD. Fluoride release and uptake capacities of fluoride-releasing restorative materials. Oper Dent 2003;28:395-402.
  26. Karantakis P, Helvatjoglou-Antoniades M, Theodoridou-Pahini S, Papadogiannis Y. Fluoride release from three glass ionomers, a compomer, and a composite resin in water, artificial saliva, and lactic acid. Oper Dent 2000;25:20-5.
  27. Hayacibara MF, Ambrozano GM, Cury JA. Simultaneous release of fluoride and aluminum from dental materials in various immersion media. Oper Dent 2004;29:16-22.
  28. Yap AU, Tham SY, Zhu LY, Lee HK. Short-term fluoride release from various aesthetic restorative materials. Oper Dent 2002;27:259-65.
  29. Gao W, Smales RJ, Gale MS. Fluoride release/uptake from newer glass-ionomer cements used with the ART approach. Am J Dent 2000;13:201-4.
  30. Yli-Urpo H, Vallittu PK, Narhi TO, Forsback AP, Vakiparta M. Release of silica, calcium, phosphorus, and fluoride from glass ionomer cement containing bioactive glass. J Biomater Appl 2004;19:5-20. https://doi.org/10.1177/0085328204044538
  31. Osinaga PW, Grande RH, Ballester RY, Simionato MR, Delgado Rodrigues CR, Muench A. Zinc sulfate addition to glass-ionomer-based cements: influence on physical and antibacterial properties, zinc and fluoride release. Dent Mater 2003;19:212-7. https://doi.org/10.1016/S0109-5641(02)00032-5
  32. Mazzaoui SA, Burrow MF, Tyas MJ, Dashper SG, Eakins D, Reynolds EC. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement. J Dent Res 2003;82:914-8. https://doi.org/10.1177/154405910308201113
  33. Lucas ME, Arita K, Nishino M. Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement. Biomaterials 2003;24:3787-94. https://doi.org/10.1016/S0142-9612(03)00260-6
  34. Mousavinasab SM, Meyers I. Fluoride release by glass ionomer cements, compomer and giomer. Dent Res J (Isfahan) 2009;6:75-81.
  35. Palmer G, Anstice HM, Pearson GJ. The effect of curing regime on the release of hydroxyethyl methacrylate (HEMA) from resin-modified glass-ionomer cements. J Dent 1999;27:303-11. https://doi.org/10.1016/S0300-5712(98)00058-X
  36. Hamid A, Hume WR. Diffusion of resin monomers through human carious dentin in vitro. Endod Dent Traumatol 1997;13:1-5. https://doi.org/10.1111/j.1600-9657.1997.tb00001.x
  37. Kan KC, Messer LB, Messer HH. Variability in cytotoxicity and fluoride release of resin-modified glass-ionomer cements. J Dent Res 1997;76:1502-7. https://doi.org/10.1177/00220345970760081301
  38. McLean JW, Nicholson JW, Wilson AD. Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int 1994;25:587-9.
  39. Meyer JM, Cattani-Lorente MA, Dupuis V. Compomers: between glass-ionomer cements and composites. Biomaterials 1998;19:529-39. https://doi.org/10.1016/S0142-9612(97)00133-6
  40. Eliades G, Kakaboura A, Palaghias G. Acid-base reaction and fluoride release profiles in visible light-cured polyacid-modified composite restoratives (compomers). Dent Mater 1998;14:57-63. https://doi.org/10.1016/S0109-5641(98)00010-4
  41. Ruse ND. What is a "compomer"? J Can Dent Assoc 1999;65:500-4.
  42. Young AM, Rafeeka SA, Howlett JA. FTIR investigation of monomer polymerisation and polyacid neutralisation kinetics and mechanisms in various aesthetic dental restorative materials. Biomaterials 2004;25:823-33. https://doi.org/10.1016/S0142-9612(03)00599-4
  43. Nicholson JW, Alsarheed M. Changes on storage of polyacid-modified composite resins. J Oral Rehabil 1998;25:616-20. https://doi.org/10.1046/j.1365-2842.1998.00288.x
  44. Dahl JE, Li J, Ruyter IE. Long-term water uptake of compomers and its effect on mechanical properties. J Dent Res 1998;77(2 Suppl):657 (abstract 207).
  45. Adusei GO, Deb S, Nicholson JW. A preliminary study of experimental polyacid-modified composite resins ('compomers') containing vinyl phosphonic acid. Dent Mater 2005;21:491-7. https://doi.org/10.1016/j.dental.2004.07.014
  46. Mendonca JS, Souza MH Jr, Carvalho RM. Effect of storage time on microtensile strength of polyacid-modified resin composites. Dent Mater 2003;19:308-12. https://doi.org/10.1016/S0109-5641(02)00059-3
  47. Bayindir YZ, Yildiz M. Surface hardness properties of resin-modified glass ionomer cements and polyacid-modified composite resins. J Contemp Dent Pract 2004;5:42-9. https://doi.org/10.5005/jcdp-5-4-42
  48. Loguercio AD, Reis A, Barbosa AN, Roulet JF. Five-year double-blind randomized clinical evaluation of a resin-modified glass ionomer and a polyacid-modified resin in noncarious cervical lesions. J Adhes Dent 2003;5:323-32.
  49. Ermis RB. Two-year clinical evaluation of four polyacid-modified resin composites and a resin-modified glass-ionomer cement in Class V lesions. Quintessence Int 2002;33:542-8.
  50. Yli-Urpo H, Lassila LV, Narhi T, Vallittu PK. Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dent Mater 2005;21:201-9. https://doi.org/10.1016/j.dental.2004.03.006
  51. Yli-Urpo H, Narhi M, Narhi T. Compound changes and tooth mineralization effects of glass ionomer cements containing bioactive glass (S53P4), an in vivo study. Biomaterials 2005;26:5934-41. https://doi.org/10.1016/j.biomaterials.2005.03.008
  52. Xie D, Zhao J, Weng Y, Park JG, Jiang H, Platt JA. Bioactive glass-ionomer cement with potential therapeutic function to dentin capping mineralization. Eur J Oral Sci 2008;116:479-87. https://doi.org/10.1111/j.1600-0722.2008.00562.x
  53. Ana ID, Matsuya S, Ohta M, Ishikawa K. Effects of added bioactive glass on the setting and mechanical properties of resin-modified glass ionomer cement. Biomaterials 2003;24:3061-7. https://doi.org/10.1016/S0142-9612(03)00151-0
  54. Hench LL. The story of Bioglass. J Mater Sci Mater Med 2006;17:967-78. https://doi.org/10.1007/s10856-006-0432-z
  55. Mousavinasab SM, Khoroushi M, Keshani F, Hashemi S. Flexural strength and morphological characteristics of resin-modified glass-ionomer containing bioactive glass. J Contemp Dent Pract 2011;12:41-6. https://doi.org/10.5005/jp-journals-10024-1008
  56. Khoroushi M, Mousavinasab SM, Keshani F, Hashemi S. Effect of resin-modified glass ionomer containing bioactive glass on the flexural strength and morphology of demineralized dentin. Oper Dent 2013;38:E1-10. https://doi.org/10.2341/11-436-L
  57. Kim DA, Lee JH, Jun SK, Kim HW, Eltohamy M, Lee HH. Sol-gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties. Dent Mater 2017;33:805-17. https://doi.org/10.1016/j.dental.2017.04.017
  58. Lee JH, Kang MS, Mahapatra C, Kim HW. Effect of aminated mesoporous bioactive glass nanoparticles on the differentiation of dental pulp stem cells. PLoS One 2016;11:e0150727. https://doi.org/10.1371/journal.pone.0150727
  59. Lee JH, El-Fiqi A, Jo JK, Kim DA, Kim SC, Jun SK, et al. Development of long-term antimicrobial poly(methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent Mater 2016;32:1564-74. https://doi.org/10.1016/j.dental.2016.09.001
  60. Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, et al. Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 2015;33:621-36. https://doi.org/10.1016/j.tibtech.2015.09.005
  61. Oliveira-Ogliari A, Collares FM, Feitosa VP, Sauro S, Ogliari FA, Moraes RR. Methacrylate bonding to zirconia by in situ silica nanoparticle surface deposition. Dent Mater 2015;31:68-76. https://doi.org/10.1016/j.dental.2014.11.011
  62. Mabrouk M, Selim MM, Beherei H, El-Gohary MI. Effect of in corporation of nano bioactive silica into commercial glassionomer cement (GIC). J Genet Eng Biotechnol 2012;10:113-9. https://doi.org/10.1016/j.jgeb.2012.01.001
  63. Choi JY, Lee HH, Kim HW. Bioactive sol-gel glass added ionomer cement for the regeneration of tooth structure. J Mater Sci Mater Med 2008;19:3287-94. https://doi.org/10.1007/s10856-008-3464-8
  64. Saravana KR, Vijayalakshmi R. Nanotechnology in dentistry. Indian J Dent Res 2006;17:62-5. https://doi.org/10.4103/0970-9290.29890
  65. Lee JH, Seo SJ, Kim HW. Bioactive glass-based nanocomposites for personalized dental tissue regeneration. Dent Mater J 2016;35:710-20. https://doi.org/10.4012/dmj.2015-428
  66. Park SJ, Gupta KC, Kim H, Kim S, Kang IK. Osteoblast behaviours on nanorod hydroxyapatite-grafted glass surfaces. Biomater Res 2019;23:28. https://doi.org/10.1186/s40824-019-0178-6
  67. Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater 2008;4:432-40. https://doi.org/10.1016/j.actbio.2007.07.011
  68. Arita K, Yamamoto A, Shinonaga Y, Harada K, Abe Y, Nakagawa K, et al. Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement. Dent Mater J 2011;30:672-83. https://doi.org/10.4012/dmj.2011-029
  69. Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc 2003;134:1382-90. https://doi.org/10.14219/jada.archive.2003.0054
  70. Saunders SA. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics. Clin Cosmet Investig Dent 2009;1:47-61. https://doi.org/10.2147/CCIDE.S7722
  71. Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 2010;6:715-34. https://doi.org/10.1016/j.actbio.2009.10.031
  72. Ramesh N, Moratti SC, Dias GJ. Hydroxyapatite-polymer biocomposites for bone regeneration: a review of current trends. J Biomed Mater Res B Appl Biomater 2018;106:2046-57. https://doi.org/10.1002/jbm.b.33950
  73. Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol 2010;5:565-9. https://doi.org/10.1038/nnano.2010.83
  74. Najeeb S, Khurshid Z, Matinlinna JP, Siddiqui F, Nassani MZ, Baroudi K. Nanomodified peek dental implants: bioactive composites and surface modification-a review. Int J Dent 2015;2015:381759. https://doi.org/10.1155/2015/381759
  75. Khurshid Z, Zafar M, Qasim S, Shahab S, Naseem M, AbuReqaiba A. Advances in nanotechnology for restorative dentistry. Materials (Basel) 2015;8:717-31. https://doi.org/10.3390/ma8020717
  76. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  77. Hannig M, Hannig C. Nanotechnology and its role in caries therapy. Adv Dent Res 2012;24:53-7. https://doi.org/10.1177/0022034512450446
  78. Curtis AR, Palin WM, Fleming GJ, Shortall AC, Marquis PM. The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength. Dent Mater 2009;25:188-97. https://doi.org/10.1016/j.dental.2008.06.003
  79. Terry DA. Direct applications of a nanocomposite resin system: part 1-the evolution of contemporary composite materials. Pract Proced Aesthet Dent 2004;16:417-22.
  80. Chen MH. Update on dental nanocomposites. J Dent Res 2010;89:549-60. https://doi.org/10.1177/0022034510363765
  81. Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. J Mater Chem 2011;21:1319-28. https://doi.org/10.1039/C0JM02309D
  82. Kang IK, Park SJ, Kang SH, inventors; Kang SH, assignee. Glass based filler for dental restoration, method for manufacturing thereof, and dental restoration comprising thereof. Korea KR patent, 10-2020-0021006. 2020 Feb 20.
  83. Haider A, Gupta KC, Kang IK. Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. Biomed Res Int 2014;2014:308306.
  84. Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent 2008;36:450-5. https://doi.org/10.1016/j.jdent.2008.03.001
  85. De Caluwe T, Vercruysse CW, Fraeyman S, Verbeeck RM. The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties. Dent Mater 2014;30:1029-38. https://doi.org/10.1016/j.dental.2014.06.003
  86. Ong JL, Chan DCN. A review of hydroxapatite and its use as a coating in dental implants. Crit Rev Biomed Eng 2017;45:411-51. https://doi.org/10.1615/CritRevBiomedEng.v45.i1-6.160
  87. Gu YW, Yap AUJ, Cheang P, Khor KA. Zirconia-glass ionomer cement-A potential substitute for miracle mix. Scr Mater 2005;52:113-6. https://doi.org/10.1016/j.scriptamat.2004.09.019
  88. Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater 2009;4:034104. https://doi.org/10.1088/1748-6041/4/3/034104
  89. Huang S, Gao S, Cheng L, Yu H. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res 2011;45:460-8. https://doi.org/10.1159/000331207
  90. Zakir M, Al Kheraif AA, Asif M, Wong FS, Rehman IU. A comparison of the mechanical properties of a modified silorane based dental composite with those of commercially available composite material. Dent Mater 2013;29:e53-9.
  91. Yap AU, Pek YS, Kumar RA, Cheang P, Khor KA. Experimental studies on a new bioactive material: HAIonomer cements. Biomaterials 2002;23:955-62. https://doi.org/10.1016/S0142-9612(01)00208-3
  92. Moshaverinia A, Ansari S, Movasaghi Z, Billington RW, Darr JA, Rehman IU. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent Mater 2008;24:1381-90. https://doi.org/10.1016/j.dental.2008.03.008
  93. Lee JJ, Lee YK, Choi BJ, Lee JH, Choi HJ, Son HK, et al. Physical properties of resin-reinforced glass ionomer cement modified with micro and nano-hydroxyapatite. J Nanosci Nanotechnol 2010;10:5270-6. https://doi.org/10.1166/jnn.2010.2422
  94. Cehreli SB, Tirali RE, Yalcinkaya Z, Cehreli ZC. Microleakage of newly developed glass carbomer cement in primary teeth. Eur J Dent 2013;7:15-21. https://doi.org/10.4103/1305-7456.119058
  95. Zainuddin N, Karpukhina N, Law RV, Hill RG. Characterisation of a remineralising Glass $Carbomer^{(R)}$ ionomer cement by MAS-NMR spectroscopy. Dent Mater 2012;28:1051-8. https://doi.org/10.1016/j.dental.2012.06.011
  96. Hasan AMHR, Sidhu SK, Nicholson JW. Fluoride release and uptake in enhanced bioactivity glass ionomer cement ("glass $carbomer^{TM}$") compared with conventional and resin-modified glass ionomer cements. J Appl Oral Sci 2019;27:e20180230. https://doi.org/10.1590/1678-7757-2018-0230
  97. Van Den Bosch W, Van Duinen RN, inventors; STICHTING GLASS FOR HEALTH, assignee. Self hardening glass carbomer composition. United States patent US 20060217455 A1. 2006 Sep 28.

Cited by

  1. Conventional glass-ionomer cements: a guide for practitioners vol.48, pp.8, 2020, https://doi.org/10.12968/denu.2021.48.8.643
  2. Effect of Aluminum Chloride Hemostatic Agent on Bonding Strength of RMGIC in Primary Tooth vol.48, pp.4, 2020, https://doi.org/10.5933/jkapd.2021.48.4.397
  3. 지혈제의 종류에 따른 레진 강화형 글라스아이오노머 시멘트 결합력의 차이 vol.48, pp.4, 2021, https://doi.org/10.5933/jkapd.2021.48.4.460