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Introduction 

Next-generation sequencing technology has transformed transcriptomics by allowing si-
multaneous identification and quantification of the expressed RNA molecules. However, 
this RNA-sequencing applied to bulk samples provides averaged expression profiles, not 
single-cell level variations. On the other hand, single-cell RNA-seq (scRNA-seq) isolates 
single cells from a given bulk sample, and measures the expression profile of a number of 
RNA species from each cell, offering the potential of cell-type characteristics as well as cell-
type profiles of the bulk sample [1-3]. scRNA-seq has been applied to various fields such 
as neurobiology and cancer biology [1]. For example, immunotherapy has been developed 
as an effective cancer therapy, and thus underpinning of cancer immunology is crucial in 
the development of immunotherapy; scRNA-seq is a useful tool in this area [4-6]. 

scRNA-seq involves simultaneous analyses of many cell and genes, efficiency is crucial. 
One of the time-consuming steps is cell type annotation. The conventional method is la-
borious and subjective. To address this problem, some annotation methods have been 
developed by using additional transcriptomic data as reference coupled with ma-
chine-learning technique [7,8]. For instance, SingleR, a cell type annotation tool for 
scRNA-seq, leverages reference transcriptomic datasets of pure cell types to infer the cell 
of origin of each of the single cells independently [7]. But these methods require addi-
tional data and consume much computing power needed to perform machine-learning. 
Here we propose a semi-automatic method that calculates a normalized score for each 
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cell type based on user-supplied cell type–specific marker gene 
list. The user can easily decide a cut-off score for each cell type 
based on the plots of score distributions. 

Methods 

Materials 
We downloaded raw scRNA-seq datasets from the publicly avail-
able ArrayExpress DB (E-MTAB-6173) and Gene Expression 
Omnibus (GSE92332). A 10 ×  Genomics [3] technology was 
used to generate these two datasets. One dataset (E-MTAB-6173) 
was generated from male and female mouse cardiac cell pools after 
depleting endothelial cells to 10% [9]. The other dataset 
(GSE92332) was measured from small intestinal epithelial cells 
from female and male mice that were randomly assigned to treat-
ment groups after matching for the sex and age of 7–10 weeks 
[10]. 

Overall analysis workflow 
Our scRNA-seq analysis pipeline is based on a well-established 
practice of processing 10 ×  Genomics data. The sequencing data 
were processed with Cellranger to obtain an expression matrix of 
RNAs for each cell. Subsequent processing was performed with 
Seurat for various quality control steps involving cell filtering, nor-

malization, and removal of technical variation, followed by prelim-
inary analyses such as dimension reduction, clustering, cell type 
annotation, and differential expression analysis [11]. Our Cell 
Type Activity (CTA) annotation method is an alternative to the 
cell type annotation step in Seurat. For each cell type, the expres-
sion matrix of gene-by-cell was used in co-expression network 
analysis using WGCNA [12]. The modules in the network were 
analyzed for the enrichment of Gene Ontology terms and identifi-
cation of upstream transcription factors (TFs) using iRegulon 
(Fig. 1) [13]. 

Alignment and pre-filtering 
STAR was used to map FASTQ reads to mm10-3.0.0 mouse ref-
erence genome [14]. Cellranger detects the cases where two 
cells are captured by a 10 ×  Genomics GEM bead and filters the 
RNA counts originated from the dead cells. Using default op-
tions of Cellranger 3.0.2, the feature-barcode matrix was generat-
ed. 

Dimension reduction, clustering, and annotation 
Seurat 3.1.0 was used for principal component analysis, t-stochas-
tic neighbor embedding (t-SNE), clustering, and cell-type annota-
tion of the feature-barcode matrix that had been generated by 
Cellranger. With the clustered result, each cluster is annotated with 
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Fig. 1. Analysis workflow diagram. This diagram illustrates overall workflow used in our study. FASTQ files were processed for alignment, 
cell filtering, UMI count and feature (genes) count by using CellRanger. CellRanger is a popular pipeline that processes Chromium single-
cell 3′ RNA-sequencing data. Next, Seurat was used to generate clusters of cells. Seurat is an R package offering functions for secondary 
analysis such as cell QC, dimension reduction, clustering and differential expressed gene analysis. After clustering, we used our Cell Type 
Activity estimation technique for cell type annotation. To identify modules from each cell type, WGCNA was used. WGCNA is an R package 
that calculates correlation weighted network by using gene expression data and creates clusters of genes. Enrichment analysis study was 
conducted on each modules and iRegulon was used to identify potential transcription factors co-regulating the gene sets.
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a cell type by identifying the dominant expression of a list of cell 
type–specific markers. The conventional method requires manual 
examination of a violin plot for each marker of a cell type, followed 
by confirmation of its high expression in the feature plot. This is a 
laborious step, often producing imprecise results especially for the 
cases having a high number of clusters or many similar cell types. 
In order to reduce human errors, we automated the cell type anno-
tation step using the algorithm that has been well developed for 
gene-set analysis [15]. Our method is called Cell Type Activity 
(CTA) method. 

The inputs to CTA comprise a feature-barcode matrix, the clus-
ter membership of each cell, and a list of markers for each cell type 
of the user’s choice. Suppose the following: there are K clusters 
from the Seurat result and these clusters would be annotated with 
C different cell types. If each cell type has N marker genes, there 
would be a total of C ×  N markers. The following steps are repeat-
ed C times, one for each cell type. For a given cell type, the first 
step tabulates the cluster median expression of each marker, gener-
ating an N ×  K matrix. Each row of the matrix (P) is then normal-
ized so that it sums to unity 			        . In the second 
step, we calculate the weight to emphasize informativeness of a 
marker gene in classifying the clusters. To calculate this, we use the 
concept of Gini impurity that measures how homogeneous the 
groupings are. Because the original Gini impurity reaches its mini-
mum (zero) when only one class is classified, we modified it to 
give the highest score if a marker gene is expressed specifically in 
one cluster. The weight for the ith gene is defined as below: 

(1)

where pik represents one of the elements of the aforementioned P 
matrix. In the third step, a CTA score for the kth cluster, Sk, is calcu-
lated as follows:  

(2)

where Eik is the average expression value of the ith marker gene in 
the kth cluster and Wi is the weight calculated above (Eq. 1). Lastly, 
we convert the CTA scores to probabilities by normalizing them to 
a sum of unity. The user decides a cut-off score based on a cumula-
tive normal distribution curve of the normalized CTA scores. The 
clusters having the score above the cut-off are then annotated with 
the given cell type. The whole process is repeated for each cell type. 

Co-expression and co-regulatory networks 
WGCNA 1.68 was used to construct cell type–specific co-expres-

sion networks. The Seurat output was parsed to be used as an in-
put to WGCNA. The resulting modules were further analyzed for 
the enrichment of Gene Ontology terms. 

For the co-expressed modules, the potential upstream TFs were 
inferred using iRegulon 1.3 available as an application of Cytos-
cape. For the TF binding motif search, the 20 kb upstream region 
of transcription start site of each gene was used. 

Results 

The FASTQ files of mouse cardiac cell pools (ArrayExpress 
E-MTAB-6173) were processed with Cellranger, resulting in the 
feature-barcode matrix of 11,701 cells. Seurat was used to analyze 
the single-cell level heterogeneity. The cells having mitochondrial 
RNAs more than 25% of the total expressed RNAs were removed. 
In order to remove cells having unrealistic RNA varieties, only the 
cells with unique feature counts within the range between 200 and 
5,000 were kept, resulting in a total of 11,587 cells and 17,432 
genes. For the t-SNE clustering, 24 dimensional components as 
inferred from the principal component analysis and the resolution 
value of 2.0 were used, resulting in a total of 35 clusters. In order to 
annotate an appropriate cell type to each cluster we employed the 
CTA method (see Methods) using 12 cell types having 10 unique 
marker genes per cell type (Supplementary Table 1) [9]. The CTA 
score distribution for each cell type was manually examined to ad-
just the cut-off (see Supplementary Fig. 1A–F for exemplary 
plots). The t-SNE clustering with the cell type annotation is 
shown in Fig. 2, while the number of cells and genes identified for 
each cell type are listed in Table 1. The CTA matrix (12 rows by 35 
columns) is given in Supplementary Table 2. 

The performance of our CTA annotation method was evaluated 
with the other scRNA-seq dataset of mouse small intestinal epithe-
lium [10]. The same workflow was applied for cell QC, resulting in 
a total of 5,188 cells and 14,259 genes. For clustering and visualiza-
tion, 12 principal components and the resolution value of 0.8 were 
used, resulting in a total of 15 clusters. We performed the CTA 
method by using the 11 cell-type lists (Supplementary Table 3). 
Cumulative distribution of the CTA score was visualized for deci-
sion of the cut-off (Supplementary Fig. 2A–K). The final annota-
tion graph visualized by t-SNE is shown in Supplementary Fig. 3, 
and the CTA matrix is given in Supplementary Table 4. The anno-
tation results for the major clusters were qualitatively congruent 
with the original work [10].  

In order to assess the quality of our CTA annotation method, we 
performed co-expression and co-regulatory network analyses with 
the clustering and annotation results of the mouse cardiac cell 
pools [9]. While the member cells in each cell-type cluster display 
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was constructed with WGCNA. The network was modularized 
using the soft threshold value (Supplementary Table 5) that pro-
duced a scale-free network for each cell-type cluster. Each co-ex-
pression module was further analyzed for the enrichment of Gene 
Ontology terms (Table 2). 

As shown in Table 3, an exemplary module from the dendritic 
cell (DC) cluster was significantly enriched with immune-related 
terms that are related to the features of dendritic cells such as im-
mune cell activation, recognition of pathogen (the full listing in 

Fig. 2. t-distributed stochastic neighbor embedding (t-SNE) result of cardiac non-myocytes. This plot displays final cell type annotation 
based on Cell Type Activity (CTA) scores. Feature-barcode matrix from single-cell RNA sequencing data was used for dimension reduction by 
using principal component analysis. After dimension reduction, t-SNE was used to visualize the clusters. The cell type for each cluster was 
inferred from the CTA score.
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Table 1. Annotation summary table

Cell Gene
Fibroblast 1 6,386 16,840
Macrophage 1,427 15,773
Endothelial cell 920 14,594
Smooth muscle cell 712 14,616
Fibroblast 2 661 15,324
Pericyte 425 12,968
B cell 331 12,646
Dendritic cell 208 13,007
Schwann cell 179 12,416
Granulocyte 134 9,392
T cell 121 11,282
Natural killer cell 56 10,187

This chart displays summary of cell types after annotation based on Cell 
Type Activity score. The amount of cells of each cell type is written at 
cell column. The number of genes that were expressed in the cell type is 
showed at gene column.

a similar expression profile as they are clustered together, their ex-
pression profiles are not identical to one another, and in fact they 
show some discrepancy as shown by the volume encompassed by 
each cluster (Fig. 2). This variation within a cell-type cluster may 
be an ideal resource for inferring co-regulatory networks. If our 
CTA method performed well, the resulting network should have 
reasonable literature evidence congruent with the annotated cell 
type. For each of the 12 cell-type clusters, co-expression network 

Table 2. Co-expression module summary table

Cell type All modules GO assigned modules
Dendritic cell 98 13
T cell 86 5
Schwann cell 81 7
Pericyte 81 2
Granulocyte 76 6
Endothelial cell 67 13
Smooth muscle cell 57 11
B cell 50 7
Natural killer cell 46 7
Macrophage 37 14
Fibroblast 2 23 5
Fibroblast 1 12 8

Each column represents the number of modules generated by co-
expression network and the number of modules that were enriched Gene 
Ontology (GO) term, respectively.
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Supplementary Table 6). This module comprises of 242 genes and 
the iRegulon motif analysis of their 20 kb upstream of transcrip-
tion start site inferred 11 potential TFs (Table 4). Among the in-
ferred TFs, STAT1 and CEBPB have more than 100 target genes 
each. Their regulatory relationship is depicted in Fig. 3, showing 
that CEBPB regulates STAT1, which is also self-regulated. Having 
established this, their roles in DC biology was surveyed from the 
literature. It is known that up-regulation of STAT6 pathway plays 
an important role in the differentiation of immature DCs, and its 
down-regulation is related to the maturation of DCs. It is reported 
that STAT1 pathway works opposite to STAT6 pathway, maturat-
ing mDCs [16]. IRF8, an epigenetic and fate-determining TF of 
plasmacytoid dendritic cell (pDC), modulates chromatin modifi-
cation of thousands of pDC enhancers. CEBPB forms a negative 
feedback loop with IRF8, determining the epigenetic fate of 
monocyte-derived DCs [17]. 

Discussion 

Here we propose an efficient semi-automatic processing pipeline 
of scRNA-seq data, called CTA method. Its quality was assessed 
by constructing co-expression and co-regulatory networks using 
the cell type annotation results. Our results were qualitatively con-
gruent with the literature information. In scRNA-seq, many really 
expressed RNA species are missed. If this drop-out event can be 
complemented by imputation, much richer information can be re-
trieved. However, the current implementation of the imputation 
such as BISCUIT is very slow and not attempted in this work [18]. 

The strategy demonstrated in this work may find useful applica-
tions in inferring regulators of various cell types. For example, for 
the cell types whose critical differentiation regulators are elusive, 
co-regulatory network construction of progenitor and differentiat-
ed cells may elucidate key modules for the differentiation. 

Table 3. Dendritic cell exemplary module GO term result

Enrichment P Term ID Term name
5.94E-24 GO:0035456 Response to interferon-beta
2.15E-20 GO:0006952 Defense response
3.99E-20 GO:0045087 Innate immune response
1.61E-19 GO:0035458 Cellular response to interferon-beta
4.47E-19 GO:0043207 Response to external biotic stimulus
4.47E-19 GO:0051707 Response to other organism
1.96E-15 GO:0098542 Defense response to other organism

Enrichment analysis revealed the module that is highly associated with 
immune Gene Ontology (GO) term. This table represents the list of GO 
terms from tan module.

Table 4. Dendritic cell inferred TF summary table

Inferred TF Target gene count
Stat1 156
Cebpb 109
Ar 19

Sox9 32
Atf2 21
Yy1 14
Cebpe 8
Mybl2 10
Snai2 9
Tbx15 27
Bdp1 12

The gene set from the exemplary module of dendritic cell was used 
for regulatory network analysis, which enables to infer co regulation 
transcription factor (TF). This chart shows revealed TF names and related 
gene from the module.

Fig. 3. Dendritic cell exemplary module regulatory network. Co-
expression network was conducted to find modules of dendritic 
cell. Gene list in the module that highly enriched immune functions 
was analyzed to identify co-regulating transcription factors. 
Network visualization illustrates interactions between transcription 
factors (TFs; green) and genes (pink) from the module. The analysis 
revealed that two TF (CEBPB and STAT1) are significantly related 
to the genes. There is also relationship between two TFs and self-
regulatory loop for the downstream STAT1.
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