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Introduction 

One of the main advances in bioinformatics, computational biology, and biotechnology 
is the sequence-set analysis. It is a new research direction parallel to sequence analysis. 
The main idea behind it is to analyze composite data points in data space, feature space or 
distance space. A composite data points is a dataset, for example set of feature vectors, set 
of sequences. This generalized concept proposed in [1,2]. Now, dealing with segmented 
genomes of influenza virus as composite data points has different aspects: biodiversity, 
bio-intelligent system, genomic variation, and vaccine efficiency. 

The influenza viruses have a negative impact on public health and still creating threats 
for different life aspects. The early pandemic of H1N1 flu virus started in 1918 [3]. Re-
cent advances in bioinformatics and biotechnology have extended and expanding the in-
sights of analyzing the segmented genome of the flu virus and exploring the influenza bi-
ology [2]. Influenza virus has the following features: (1) it is a single RNA-stranded en-
veloped virus, (2) its genome is segmented, and it has eight segments, each segment can 
be encoded to one or two proteins, (3) it is a negative-sense virus, and (4) it can be rated 
as highly-mutated genome [4]. The virus can infect various hosts, and it has different 
types and subtypes. The subtypes can be identified according to its surface proteins, 
haemagglutinin (HA) and neuraminidase (NA) [2,3]. Now, there are 18 HA and 11 NA 
distinct surface proteins [3,4]. The source of genetic variation is two processes: (1) anti-
genic drift, or (2) antigenic shift. 

As defined by Daoud’s study [1,2], a segmented genome of influenza virus is a com-
posite data point. A composite data point is a dataset from unknow or a well know proba-
bility distribution. In machine learning and data mining there are many algorithms that 
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ture spaces, then the probability distribution is called the deep dis-
tance distribution (or the deep distance paradigm). Now, we shall 
consider three technical cases about this implementation. We have 
downloaded 30 segmented genome of influenza virus A, 30 seg-
mented genome of influenza virus B from NCBI-Influenza Virus 
Database as training datasets [9]. In addition, we have download-
ed 108 segmented genome of influenza virus A and B from NC-
BI-Influenza Virus Database as testing dataset [9]. In case 1, the 
sizes of training datasets are: 30 segmented genomes for flu A vi-
rus, and 30 segmented genomes for flu B virus respectively. The 
size of testing dataset is 108 segmented genome of influenza virus 
A and B. Fig. 1 illustrates the analytics of deep statistical learning 
approach in dealing with composite data points. The first subfigure 
has two aspects (Fig. 1A): combining two feature spaces (1 and 2 
grams feature vectors) to produce two distance values (or (2 × 1) 
distance vector) with respect to a training dataset using the exten-
sion principle. In other words, the concept of deep statistical learn-
ing is based on extension of the data life cycle. The second subfig-
ure has the same pervious aspects, and by combining three feature 
spaces, therefore, the result is a (3 × 1) distance vector (Fig. 1B). It 
should be noted that a distance vector is a random vector and it 
has observations, and those observations are called distance-data 
vectors. For each feature space, the distance vector as a random 
vector has a probability distribution, and in this case, it is called the 
distance distribution paradigm. The distance distribution para-
digm for 1-grams, 2-grams, 3-grams feature spaces are illustrated in 
Fig. 1C, 1D, and 1E , respectively. From these subfigures we can 
conclude the following: each subfigure has two peaks, each peak 
represents a class, influenza A virus and influenza B virus. One 
bell-shaped density curve skewed to the right and another curve 
skewed to the left. One class has more dispersion than the other, 
which is in this case influenza A virus. Now consider a training 
dataset with lack of diversity. Suppose we have two training data-
sets that represent only one class (in this case influenza A virus), 
one has 30 composite datapoints and another one has 10 compos-
ite datapoints, hence, Figs. 2 and 3 represent the outcomes from 
these two experiments respectively. Based on the subfigures of 
Figs. 2 and 3, we have different dispersion maps, two classes, and 
two peaks. This note has effective conclusions about the impact of 
size and diversity of datasets on classification results using the dis-
tance distribution paradigm. 

In this section we presented the technical notes about the dis-
tance distribution paradigm for Mosaab-metric using 1, 2, and 3 
grams feature extraction techniques to analyze composite data 
points in high dimensional feature spaces. In the next section we 
shall present the conclusions. 

they can be used to analyze, visualize, classify and cluster data 
points. Usually regular data points, for example, data vectors, uni-
variate data points, and sequences. Processing composite data 
points is another complicated computational task for existing 
computational pipelines. Building a statistical learning computa-
tional pipeline has several computational challenges [5]. As de-
fined in James et al. [6], statistical learning is a set of unsupervised 
and supervised computational algorithms that can be used in pro-
cessing datapoints to extract knowledge and deep understanding 
about the relationship and structure of data. In other words, statis-
tical learning focuses on learning the relationship and structure 
from data vectors (i.e., observations of a feature vector). In deep 
statistical learning, we learn about the relationship and structure of 
data from distance data vectors after mapping datapoints into dif-
ferent feature spaces using the extension principle of data life cycle 
[1]. Developing a statistical learning computational pipeline for 
analyzing the segmented genomes of flu virus is a completed task. 
One of the computational aspects in statistical learning is to ana-
lyze the distance distribution paradigm for the datapoints under 
consideration [6-8]. A distance distribution paradigm is defined as 
the probability distribution of a distance measure or metric [6]. In 
other words, the distance measure or metric is defined as a random 
variable or random vector [6-8]. In the next section, we shall pres-
ent a note on the distance distribution paradigm for Mosaab-met-
ric space. 

Technical Implementation 

In this section, we shall present technical analysis of the deep dis-
tance distribution for Mosaab-metric to process segmented ge-
nomes of flu virus as composite datapoints, and by using the fol-
lowing three feature spaces: 1-grams, 2-grams, and 3-grams. Map-
ping each composite data point into various feature spaces by using 
n-grams technique (in this case n =  1, 2, and 3) has the following 
outcomes: data-vectors are embedded into feature spaces. The fea-
ture spaces are high dimensional spaces. Each composite data 
point is represented by a dataset, and each dataset is a set of da-
ta-vectors. Transforming each set of data-vectors to variance-cova-
riance structure is another information structure, and the out-
comes are matrices. Finding the distance between each matrix in 
the testing dataset and each matrix in the training dataset has the 
following outcomes: distance values. By using the extension prin-
ciple of the data life cycle, and in this case by consider three feature 
spaces (deep statistical learning), the combined outcomes are (3 
×  1) distance-data vectors. The distance-data vectors represent a 
random vector. The random vector has a probability distribution, 
and since the extracted information is a combination of three fea-
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Fig. 1. The distance distribution paradigm for Mosaab-metric using 1, 2, and 3 grams feature extraction techniques to analyze composite 
data points in high dimensional feature spaces (case: 60 composite data points represent two classes of influenza virus, class A and class B). 
(A) Scatter-plot of composite data points in 2-dimensional space. (B) Scatter-plot of composite data points in 3-dimensional space. (C) The 
distance distribution paradigm for 1-grams feature space. (D) The distance distribution paradigm for 2-grams feature space. (E) The distance 
distribution paradigm for 3-grams feature space.
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Fig. 2. The distance distribution paradigm for Mosaab-metric using 1, 2, and 3 grams feature extraction techniques to analyze composite 
data points in high dimensional feature spaces (case: 30 composite data points represent one class of influenza virus, class A). (A) Scatter-
plot of composite data points in 2-dimensional space. (B) Scatter-plot of composite data points in 3-dimensional space. (C) The distance 
distribution paradigm for 1-grams feature space. (D) The distance distribution paradigm for 2-grams feature space. (E) The distance 
distribution paradigm for 3-grams feature space.
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Fig. 3. The distance distribution paradigm for Mosaab-metric using 1, 2, and 3 grams feature extraction techniques to analyze composite 
data points in high dimensional feature spaces (case: 10 composite data points represent one class of influenza virus, class A). (A) Scatter-
plot of composite data points in 2-dimensional space. (B) Scatter-plot of composite data points in 3-dimensional space. (C) The distance 
distribution paradigm for 1-grams feature space. (D) The distance distribution paradigm for 2-grams feature space. (E) The distance 
distribution paradigm for 3-grams feature space.
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Fig. 4. The proposed Statistical Learning computational pipeline to analytically process segmented genomes of influenza virus as composite 
datapoints (Image-Flu: https://www.cdc.gov/flu/resource-center/freeresources/graphics/images.htm [10]).

Conclusions 

In this paper we presented the distance distribution paradigm for 
Mosaab-metric using three feature spaces: 1-grams, 2-grams, and 
3-grams. We technically showed the impact of the size and diversi-
ty of training dataset on the classification results. We successfully 
analyzed the distance distribution of Mosaab-metric space as the 
most recent metric space in statistical learning research field. This 
part of analytics (as analytical techniques) about the distance dis-
tribution and the dispersion maps is expected to be in a integrated 
statistical learning computational pipeline for processing and ana-
lyzing composite data points (in this case segmented genome of 
influenza virus, see Fig. 4). The pipeline is sequentially partitioned 
into components. The first component is to map the segmented 
genomes into feature spaces (parallel computational mode can be 
applied), the second component can be executed in parallel mode, 
and it has different tools (algorithms/techniques). These tools can 
be summarized as: classification, clustering, outlier detection, and 
visualization. In the future work, we shall discuss, and present oth-
er computational algorithms and/or tools that will be included in 
this integrated pipeline. 
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