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The explosive growth of next-generation sequencing data has resulted in ultra-large-scale 
datasets and ensuing computational problems. In Korea, the amount of genomic data has 
been increasing rapidly in the recent years. Leveraging these big data requires researchers 
to use large-scale computational resources and analysis pipelines. A promising solution for 
addressing this computational challenge is cloud computing, where CPUs, memory, storage, 
and programs are accessible in the form of virtual machines. Here, we present a cloud 
computing-based system, Bio-Express, that provides user-friendly, cost-effective analysis 
of massive genomic datasets. Bio-Express is loaded with predefined multi-omics data anal-
ysis pipelines, which are divided into genome, transcriptome, epigenome, and metagenome 
pipelines. Users can employ predefined pipelines or create a new pipeline for analyzing 
their own omics data. We also developed several web-based services for facilitating down-
stream analysis of genome data. Bio-Express web service is freely available at https://www.
bioexpress.re.kr/. 
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Introduction 

Next-generation sequencing (NGS) technology has revolutionized the researches in biol-
ogy and medicine during the last decade. It is routinely used in genomics field, and explo-
sive growth of NGS data has resulted in ultra-large-scale datasets and various computa-
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tional problems [1]. Public archives for sequencing data such as 
the Sequence Read Archive have grown rapidly and now exhibit a 
doubling time of 10–18 months [2]. In Korea, genomic data have 
been increasing rapidly in recent years. As of February 2020, ap-
proximately 277 TB of genomic data have been deposited in Korea 
Bioinformation Center (KOBIC) database. 

It is not easy for typical researchers to analyze these massive ge-
nomic datasets. To obtain results from the data, researchers need to 
use high-performance computing (HPC) environments with suffi-
cient storage space and CPU cores. In addition, the difficulties in 
creating complicated computational pipelines and maintaining 
software packages tend to overwhelm bench biologists and prevent 
them from attempting to analyze their own genomic data [3]. De-
spite the availability of a vast set of computational tools and meth-
ods for genomic data analysis in public, it is still challenging for a 
genomic researcher to organize these tools, integrate them into 
workable pipelines, find accessible computational platforms, con-
figure the computing environment, and perform the actual analysis. 

A promising solution to address this computational challenge is 
cloud computing, where CPUs, memory, and storage are accessi-
ble in the form of virtual machines [4]. The cloud computing, by 
definition, refers to the on-demand delivery of IT resources and 
applications via the Internet [5]. The Software as a Service (SaaS) 
cloud service for applications provides the perfect solution for the 
analysis of massive genomic datasets. SaaS is a method of software 
delivery in the IT field that allows data to be accessed from any de-
vice with an Internet connection and web browser. In recent years, 
cloud computing has rapidly emerged as a viable option for quick-
ly and easily acquiring computational resources and pipelines for 
large-scale NGS data analyses [6]. 

The parallelism techniques in HPC infrastructure are used to 
process all the produced data in a feasible time [7]. Parallel com-
puting is a type of computation in which many calculations or the 
execution of processes are carried out simultaneously. However, it 
is still challenging to integrate bioinformatics experiments with 
parallel techniques in the HPC environments. Many applications 
developed for the analysis of genomic data are either tools running 
only on a parallel platform, such as a MapReduce platform, or gen-
eral-purpose (mainly Linux-based) programs. It is crucial to inte-
grate these two types of platform-based applications on a single 
pipeline. 

In this study, we present Bio-Express, a software package for de-
ploying an on-demand computing cloud with minimal user inter-
vention. The goal of Bio-Express is to provide a web-based analysis 
environment in which all genomic researchers, including those 
with limited or no programming knowledge, can easily analyze 
their own genomic data. The Bio-Express Graphic User Interface 

(GUI) provides a workflow editor in which users can simply use a 
predefined analysis pipeline or create a multistep analysis pipeline 
using preinstalled programs. The analysis pipelines on Bio-Express 
are exactly reproducible, and all analysis parameters and inputs are 
permanently recorded. Bio-Express makes it simple to perform a 
multistep analysis using simple drag and drop functionality. We also 
developed several web-based services for facilitating downstream 
analysis of genome data such as gene-set enrichment analysis. 

Methods 

Hardware 
All runs of analysis pipelines on Bio-Express are performed on a 
cluster of five master nodes and 33 data nodes. The hardware sys-
tem of Bio-Express consists of 800 core CPUs, 2 TB of memory, 
and 800 TB of disk storage in total. Each node has an Intel Xeon 
E502690 v2 3.0 GHz CPU, 96 GB of memory, and 28 TB of disk 
storage. The data node HDD configuration consists of the Ha-
doop Distributed File System and a solid-state drive (SSD) cache. 
The node manager handles the individual data nodes in a Hadoop 
cluster.  

Graphic User Interface (GUI)  
The GUI workspace of Bio-Express consists of eight panels: the 
user’s projects, the file explorer, the canvas, the analysis programs 
of the current pipeline, the program parameter settings, the pipe-
line panel, the program panel, and the job execution history (Fig. 
1). Among these panels, the canvas is the most important panel 
and is used for creating and modifying workflows by arranging and 
connecting activities to drive processes. The canvas provides the 
working surface for creating new workflows or editing predefined 
ones. The canvas makes it simple to perform multistep analyses 
using drag and drop functionality. 

Pipelines 
The workflows, or analysis pipelines, in the canvas are commonly 
depicted as directed acyclical graphs, in which each of the vertices 
has a unique identifier and represents a task to be performed. Ad-
ditionally, each of the tasks in a workflow can receive inputs and 
produce outputs. The outputs of a task can be directed through 
another task as an input. An edge between two vertices represents 
the channeling of an output from one task into another. The edges 
determine the logical sequence. A task can be executed once all of 
its inputs can be resolved. If one of user pipeline programs fails, us-
ers can select the program of the pipeline to view more detailed in-
formation on errors, and resume the whole pipeline from the failed 
program after fixing the errors. 
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The transfer of data 
The bottleneck of cloud computing is the transfer of data into 
clouds. Therefore, we developed a fast file transfer tool, Gbox, for 
uploading massive genomic datasets to the cloud server from the 
user’s local computer and for downloading the resulting files to the 
local. The client program of Gbox can be downloaded from the 
website and be installed on the user’s computer. Gbox has a file 
transfer at a rate of approximately 10 Gigabits per second, capable 
of dealing with big data over the web. Currently, Gbox has no file 
size limitations and storage limit on the Bio-Express cloud server. 

Scalability 
Scalability is one of the most attractive prospects of cloud comput-
ing and provides a useful safety net when a user’s needs or de-
mands change. The resource and job manager of Bio-Express dis-
tributes computing resources to user jobs within a parallel com-
puting infrastructure. Its aim is to satisfy user’s demands for com-
putation and achieve a good performance in overall system’s utili-
zation by efficiently assigning jobs to resources. The resource and 
job manager analyzes the application performance during runtime 
and predicts the demand for load balancing, i.e., when to add/re-

move resources or redistribute workload. Thus the scalability of 
Bio-Express improves the execution speed of job by efficient as-
signment of computing resources. 

Results 

The analysis pipelines can be divided into two types: predefined 
and user-created. As of February 2020, Bio-Express contains ap-
proximately 170 analysis tools and 57 predefined analysis pipelines 
for genome, transcriptome, epigenome, and metagenome data. 
Users can employ a predefined pipeline suitable for their data by 
selecting a pipeline in the pipeline panel. If users want to create a 
new analysis pipeline, they can build their own pipeline either 
from scratch or by modifying a predefined pipeline. The following 
sections describe representative predefined analysis pipelines in 
the pipeline panel.  

Genome pipeline  
For the analysis of genome data and high-density single nucleotide 
polymorphism (SNP)-arrays, we developed 25 pipelines and pro-
grams, which can be grouped into seven categories: (1) discovery 

Fig. 1. The interface of the Bio-Express workspace. The Bio-Express workflow editor has eight panels: the user’s projects (A), the file explorer 
(B), the canvas (C), the analysis programs of the current pipeline (D), the program parameter settings (E), the pipeline list (F), the program list 
(G), and the job execution history (H).
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of variants for human, animal and plant data, (2) discovery of can-
didate genes from whole-exome sequencing data of rare diseases, 
(3) identification of somatic mutations, SNPs and short INDELs 
from cancer genomes, (4) clonality and evolutionary analysis of 
cancer genomes, (5) structural variation and copy-number analy-
sis of whole-genome sequencing data, (6) population genomic 
analysis of whole-genome sequencing data, and (7) association 
studies and genomic predictions from the high-density SNP-ar-
rays. We also developed two dockerized workflows that can be 
used for the discovery of SNPs, short INDELs, or copy-number 
variations from germline and somatic sample data, and for popula-
tion genomics analysis in evolutionary studies. The two docker-
ized workflows were developed using the Workflow Description 
Language, developed on the Data Sciences Platform at the Broad 
Institute. 

We developed two tools using genome data: GenoCore [8] and 
SEXCMD [9]. GenoCore is a new method for selecting a core 
collection using modified statistical measures related to genetic al-
lele coverage and diversity. It can be used to select core subsets 
from plant genotype datasets, which is important for increasing 
cost-effectiveness and shortening the time required for the analy-
ses of genome-wide association studies (GWAS), genomics-assist-
ed breeding of crop species, etc. SEXCMD is a pipeline that can 
extract sex marker sequences from reference sex chromosomes 

and rapidly identify the sex of individuals from whole-exome/ge-
nome and RNA sequencing (RNA-Seq) data. 

Transcriptome pipeline 
The analyzing an organism’s transcriptome is important for under-
standing the functional elements of a genome [10]. RNA-Seq is a 
deep-sequencing technique that can be used to explore and profile 
the entire transcriptome of any organism [11]. Fig. 2 shows a typi-
cal schematic overview of the RNA-Seq analysis pipeline on the 
canvas. The pipeline, often referred to as the tuxedo pipeline, in-
cludes five analysis tools: TopHat 2.1.1 [12], Cufflinks 2.1.1 [13], 
Cuffmerge 2.1.1, Cuffdiff 2.1.1, and limma voom 1.0 [14]. TopHat 
is a fast splice junction mapper that is used to align RNA-Seq reads 
to large genomes and analyze the mapping results to identify splic-
ing junctions between exons. Cufflinks is used to assemble these 
alignments into a parsimonious set of transcripts and then estimate 
the relative abundances of these transcripts. The main purpose of 
Cuffmerge is to merge several Cufflinks assemblies, making it easier 
to produce an assembly GTF file suitable for use with Cuffdiff. 
Cuffdiff is then used to identify significant changes in transcript ex-
pression, splicing, and promoter use. Finally, voom robustly esti-
mates the mean-variance relationship and generates a precision 
weight for each individual normalized observation, which can be 
used to calculate differentially expressed genes from transcript ex-

Fig. 2. Screenshot of the RNA-sequencing (RNA-Seq) schematic diagram and its pipeline. The RNA-Seq pipeline was implemented on the 
canvas.
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pression levels. Several other pipelines for RNA-Seq data analysis 
are available at Bio-Express, including MapSplice2-RSEM [15], 
Bowtie-EMSAR [16], STAR-HTSeq [17], and STAR-RSEM [18]. 

Epigenome pipeline 
Epigenetic changes, including histone modifications and DNA 
methylation, provide a differential gene regulatory mechanism 
without altering DNA sequences [19]. Histone modifications oc-
cur mostly at histone tails by acetylation, methylation, phosphory-
lation, and ubiquitination. The accurate mapping of the called 
peaks of these modification sites is a critical step for understanding 
epigenetic transcriptional regulation. A popular, fast applicable 
pipeline for histone modification mapping was established by 
comparing various peak calling programs such as CisGenome 
[20], MACS1 and MACS2 [21], PeakSeq [22] and SISSRs [23], 
RSEG [24], SICER [25], hiddenDomains [26], BroadPeak [27], 
PeakRanger-CCAT, and PeakRanger-BCP [28]. For the best per-
formance to define the exact binding sites of proteins in DNA, we 
tested 12 histone modifications using different peak calling pro-
grams, and we suggest the MAC2 program for narrow peak identi-

fication and PeakRanger-BCP for broad peak identification. The 
analysis pipeline for histone modifications is summarized in Fig. 3; 
the input files in fastq format are preprocessed by cudapt, fastq_
quality_filter, and paired_sequence_match.py and then read qual-
ity is tested with FastQC. After mapping reads onto the reference 
genome, peak calling or domain calling is followed by application 
of MACS2 or PeakRanger-BCP. The final output is produced with 
annotation information. This simple pipeline is open to the public 
under the Bio-Express portal provided by KOBIC. 

Metagenome pipelines 
The analysis of metagenome data can be categorized into three 
parts (Fig. 4): whole metagenome shotgun sequence data analysis 
(shotgun metagenomics), whole transcriptome shotgun sequence 
data analysis (RNA-Seq), and 16S rRNA gene amplicon sequence 
data analysis (16S sequencing). In shotgun metagenomics, there 
are three pipelines: the assembly-based gene profiling, scaf-
fold-binning, and reference-guided analysis pipelines. In the as-
sembly-based gene profiling pipeline, sequence reads are assem-
bled using SOAPdenovo-63mer [29]; gene regions in the assem-

Fig. 3. Workflow for the histone modification analysis pipeline. ChIP-Seq, chromatin immunoprecipitation sequencing.
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bled sequences are predicted using MetaGeneMark [18], and the 
functions of the gene regions are assigned by the BLAST program 
with the COG and GenBank nr databases. 

In the scaffold-binning pipeline, the coverage and GC content of 
the scaffolds are calculated, and taxonomic identifiers are assigned 
to the scaffolds using MEGAN [30] and HMMER 3.0 [31]. In the 
reference-guided analysis pipeline, sequence reads are mapped 
with the BWA program with reference genes or genomes. In the 
RNA-Seq category, sequence reads are mapped and normalized, 
statistical analyses are performed to identify differentially abun-
dant genes, and finally, the results are annotated. 

The 16S sequencing category is composed of three modules in 
sequential order: automatic platform-specific quality control 
(QC), community analysis, and statistical analysis and graphics. 
We developed a program, AutoQC, for the automatic plat-
form-specific QC module. AutoQC uses platform-specific condi-
tions to efficiently remove erroneous reads. AutoQC is freely avail-
able at https://sourceforge.net/projects/autoqc/. The community 
analysis module mainly reveals the microbial diversity and classifi-
cation of microbes using Mothur. In the statistical analysis and 
graphical statistical analyses like pMANOVA test [32] are per-

formed and the analysis results are visualized. 

Creating custom (user defined) pipelines 
Users can create a new pipeline to analyze their own data on the 
canvas. To create a new pipeline, users click the ‘New Pipeline’ but-
ton in the top menu and select an analysis pipeline type. Users will 
have only the [Start] and [End] modules on the canvas immedi-
ately upon creating a pipeline after selecting a ‘new analysis pipe-
line design’ in the project type. Users can drag and drop their de-
sired analysis programs from the list of analysis programs on the 
right of the canvas. After the positioning of a desired analysis pro-
gram on the canvas, when the users place the mouse over the edge 
of the analysis program icon, a connection mark will be created 
that can be drawn to the module. Starting from the mark, the con-
nector must be dragged until the icon of the next analysis program 
to be connected becomes translucent. Users can make connections 
to the start module, the analysis program and the end module us-
ing this method to perform the analysis. The path for the output 
file is automatically a sub-path of the project in setting the input 
data. Finally, the analysis pipeline is executed with a message that 
the analysis has started. The status of the project is displayed on a 

Fig. 4. Simplified workflow diagram of the metagenomics pipelines.
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real-time basis in three modes: Complete, Execute, and Wait. 
Users can see the final results by clicking the ‘Results’ icon on the 

menu and downloading them to the user’s local computer by click-
ing the ‘Download’ button on the menu bar. Bio-Express also allows 
users to view files in various formats including text, HTML, and 
PNG on the screen without having to download the files (Fig. 5).  

Web servers  
We have developed traditional web servers in which the input is a 
small amount of data such as a gene list. The traditional web serv-
ers do not provide automatic scalability to the applications which 
is the major feature of the cloud server [33]. The developed web 
servers are ADGO2 [34], ExPathNet [35], GSA-SNP [36], and 
Barcas [37]. 

ADGO2 provides biological interpretations of microarray data 
(gene-set enrichment approach) and a list of genes (gene list over-
representation approach) via composite annotation. ADGO2 also 
supports gene- or sample-permuting gene-set enrichment analysis 
for RNA-Seq count data. ExPathNet provides network-weighted 
gene-set clustering that incorporates both gene-set overlap and 

protein-protein interaction networks. GSA-SNP is standalone 
software that provides widely used GSA methods for SNP and 
GWAS data. GSA-SNP2 [38] is an improved version of GSA-SNP 
that provides fast high-power computation by incorporating the 
random set model and SNP-count adjusted gene scores. GSA-
SNP2 can also visualize protein interaction networks within and 
across the significant pathways. Barcas is pharmacogenomics data 
analysis software developed for the mapping and analysis of multi-
plexed barcode sequencing data. Barcas employs a trie data struc-
ture for fast mapping with mismatches allowed and provides many 
functions, including quality control, data analysis and visualiza-
tion. Table 1 shows the web servers used for gene-set, pathway, 
and pharmacogenomic data analysis. 

Comparison between Bio-Express and Galaxy 
We compared Bio-Express with Galaxy, an open source system 
that is the most widely used pipeline system and empowers 
non-computational users to do computational biology. We per-
formed a comparison experiment between Bio-Express and Gal-
axy with the same data and the same RNA-Seq pipeline. We used 

Fig. 5. Screenshot of Bio-Express results. Users can view files in various formats, including text, HTML, and PNG on the web.
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an RNA-Seq case-control sample data set: 42,112,235 paired-end 
case reads and 40,975,645 paired-end control reads. The total sam-
ple size of the case and the control reads is approximately 42 GB. 
We assigned four CPU cores and 16 GB of memory for a single 
RNA-Seq job. The same machine was used for the comparison. 
The execution of the RNA-Seq pipeline on the sample data using 
Bio-Express takes a total of 3 h 44 min. The execution time using 
Galaxy was 6 h 11 min, showing Bio-Express has approximately 
1.7 times better performance than Galaxy in the execution of the 
RNA-Seq pipeline. There are two main reasons for the difference 
in runtime between the two systems. As Galaxy internally process-
es intermediate data for data conversion after finishing each pipe-
line program, the execution time is slightly increased due to the in-
ternal process of each step. Secondly, Bio-Express has fast access to 
input and output data by fully utilizing the function of a SSD 
cache, compared to the Galaxy system. 

Discussion 

The substantial decrease in the cost of NGS techniques in the past 
decade has dramatically reshaped the genome research and has led 
to its rapid adoption in biological research. Nowadays, massive 
amount of data can be generated quickly using NGS platforms. 
These data range from the function and regulation of genes, the 
clinical diagnosis and treatment of diseases, to the omics profiling 
of individual patients for precision medicine. With the exponential 
increase in volume and complexity of NGS data, cluster or HPC 
systems are essential for the analysis of large amounts of NGS data. 
But the associated costs with the infrastructure itself and the main-
tenance personnel will likely be prohibitive for small institutions 
or laboratories. 

Cloud-based applications and resources have been developed 
specifically to address the computational challenges of working 
with very large volumes of data generated by NGS technology. 
Cloud computing has changed how we manage computational re-
sources. Increasingly cloud computing is also changing how large 
computational resources are organized and how scientists in ge-
nomics collaborate and deal with vast genome data sets. 

We presented a Hadoop based distributed computational frame-
work for large-scale genomic analysis, called Bio-Express, which 
incorporates a variety of tools and methods. Our system offers a 
variety of services to researchers. Firstly, Bio-Express allows ge-
nomic researchers without informatics or programming expertise 
to perform complex large-scale analysis with only a web browser 
using drag and drop functionality. Secondly, Bio-Express is a hy-
brid system that enables users to use both analysis programs pro-
viding traditional tools and MapReduce-based big data analysis 
programs simultaneously in a single pipeline. Lastly, we also devel-
oped a high-speed data transmission solution, Gbox, to transmit a 
large amount of data at a fast rate. 

In the future work, we continuing to add powerful pipelines and 
programs including the most popular sequence and genome anal-
ysis algorithms, and to enable accessible and reproducible genom-
ic science. Secondly, we plan to create a framework with both cli-
ent-side and server-side components that simplifies the develop-
ment of web-based visual applications. Visualization and visual 
analysis are important tools in high-throughput genomics experi-
ments because large datasets do not need to be downloaded. Last-
ly, we will create a standalone installation package of Bio-Express. 
The increasingly large size of many datasets and moving the huge 
datasets is one particularly challenging aspect of current and future 
genomic science. Hence, local Bio-Express installations near the 
data are likely to become more prevalent because it makes more 
sense to run Bio-Express locally as compared to moving the data 
to a remote Bio-Express server. 
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