DOI QR코드

DOI QR Code

Kinetic Analysis for the Pyrolysis of Solid Refues Fuel Using Livestock Manure

축분 고형연료의 열분해 동역학 연구

  • Jang, Eun-Suk (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Song, Eunhye (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Yoon, Jonghyuk (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Kim, Young-Min (Department of Environmental Engineering, Daegu University)
  • 장은석 (고등기술연구원 플랜트공정개발센터) ;
  • 송은혜 (고등기술연구원 플랜트공정개발센터) ;
  • 윤종혁 (고등기술연구원 플랜트공정개발센터) ;
  • 김영민 (대구대학교 환경공학과)
  • Received : 2020.07.08
  • Accepted : 2020.07.27
  • Published : 2020.08.10

Abstract

In this study, the physico-chemical properties and pyrolysis kinetics of livestock mature solid fuel were investigated to know its feasibility as a fuel. Ultimate and proximate analysis results showed that livestock mature solid fuel has high contents of volatile matter (64.94%), carbon (44.35%), and hydrogen (5.54%). The low heating value of livestock mature solid fuel (3880 kcal/kg) was also higher than the standard requirement of solid fuel (3000 kcal/kg). Thermogravimetic analysis results indicated that livestock mature solid fuel has three decomposition temperature regions. The first temperature zone (130~330 ℃) was consisted with the vaporization of extracts and the decomposition of hemicellulose and cellulose. The second (330~480 ℃) and third (550~800 ℃) temperature regions were derived from the decomposition of lignin and additional decomposition of carbonaceous materials, respectively. The activation energy derived from model free kinetic analysis results including Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods for the pyrolysis of livestock mature solid fuel was in the range of 173.98 to 525.79 kJ/mol with a conversion rate of 0.1 to 0.9. In particular, the activation energy increased largely at the higher conversion than 0.6. The kinetic analysis using a curve-fitting method suggested that livestock mature solid fuel was decomposed via a multi-step reaction which can be divided into five decomposition steps.

본 연구에서는, 축분 고형연료의 연료적 가치를 판단하기 위해 물리화학적 특성과 열분해 동역학 분석을 수행하였다. 원소분석과 공업분석결과는 축분 고형연료는 휘발성 물질(64.94%), 탄소(44.35%) 및 수소(5.54%)의 함량이 높았다. 축분 고형연료의 저위발열량(3,880 kcal/kg) 또한 가축분뇨 고형 연료 기준(3,000 kcal/kg)보다 높았다. 열중량분석결과 축분연료는 3개의 분해온도구간을 가졌다. 첫 번째 온도구간(130~330 ℃)은 추출물의 기화, 헤미셀룰로우스 및 셀룰로우스의 분해로 구성되었다. 두 번째(330~480 ℃)와 세 번째(550~800 ℃) 온도 구간들은 리그닌의 분해와 carbonaceous materials 분해에 의한 것이었다. Friedman, FWO, KAS 같은 model free 분석방법에 의해 구해진 축분 고형연료의 열분해에 대한 활성화 에너지 값은 전환율 0.1에서 0.9 범위에서 173.98에서 525.79 kJ/mol로 나타났다. 특히, 전환율이 0.6보다 높은 구간에서 활성화에너지가 크게 증가하였다. Curve fitting 방법을 사용한 동역한 분석은 축분 고형연료가 5단계의 분해 단계로 구분될 수 있는 다단계 반응에 의해 분해됨을 제안하였다.

Keywords

References

  1. G. Mao, N. Huang, L. Chen, and H. Wang, Research on biomass energy and environment from the past to the future: A bibliometric analysis, Sci. Total Environ., 635, 1081-1090 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.173
  2. BP, BP Statistical Review of World Energy 2019, 68th edition (2019).
  3. Korea Energy Economics Institute, Yearbook of Energy Statistics (2019).
  4. Korea Energy Agency, 2019 KEA Energy Handbook (2019).
  5. C. Phae, Biomass & Biogas Technology A-JIN, Seoul, Korea (2008).
  6. Korea Forest Service, Statistical Yearbook of Forestry (2019).
  7. Ministry of Environment, Waste Generation and Treatment (2019).
  8. Ministry of Agriculture Food and Rural Affairs, Agriculture Food and Rural Affairs Statistics Yearbook (2019).
  9. Y. M. Yoon, A study on the biomass utilization and Revitalization in Korea, World Agric., 162, 73-97 (2014).
  10. K. S. Ro, K. Cantrell, D. Elliott, and P. G. Hunt, Catalytic wet gasification of municipal and animal wastes, Ind. Eng. Chem. Res., 46, 8839-8845 (2007). https://doi.org/10.1021/ie061403w
  11. J. H. Lee and Y. M. Yoon, Comparison of nutrient balance and nutrient loading index for cultivated land nutrient management, Korean J. Environ. Biol., 37(4), 554-567 (2019). https://doi.org/10.11626/KJEB.2019.37.4.554
  12. H. Cao, Y. Xin, D. Wang, and Q. Yuan, Pyrolysis characteristics of cattle manures using a discrete distributed activation energy model, Bioresour. Technol., 172, 219-225 (2014). https://doi.org/10.1016/j.biortech.2014.09.049
  13. W. G. Mezzullo, M. C. Mcmanus, and G. P. Hammond, Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste, Appl. Energy, 102, 657-664 (2013). https://doi.org/10.1016/j.apenergy.2012.08.008
  14. S. S. Thanapal, K. Annamalai, J. M. Sweeten, and G. Gordillo, Fixed bed gasification of dairy biomass with enriched air mixture, Appl. Energy, 97, 525-531 (2012). https://doi.org/10.1016/j.apenergy.2011.11.072
  15. E. S. Jang, S. D. Kim, D. H. Shin, and K. H. Lee, Estimation of pyrolysis kinetic parameters of HDPE by using peak properties of DTG curve, Korean Chem. Eng. Res., 42(3), 280-287 (2004).
  16. J. Yang, R. Miranda, and C. Roy, Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers, Polym. Degrad. Stabil., 73, 455-461 (2001). https://doi.org/10.1016/S0141-3910(01)00129-X
  17. H. L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci. C, 6, 183-195 (1964). https://doi.org/10.1002/polc.5070060121
  18. T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn., 38, 1881-1886 (1965). https://doi.org/10.1246/bcsj.38.1881
  19. J. H. Flynn and L. A. Wall, General treatment of the thermagravimetry of Polymers, J. Res. Nat. Bur. Stand. A: Phys. Chem., 70A, 487-523 (1966). https://doi.org/10.6028/jres.070A.043
  20. C. D. Doyle, Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci., 6, 639-642 (1962). https://doi.org/10.1002/app.1962.070062406
  21. H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem., 29, 1702-1706 (1957). https://doi.org/10.1021/ac60131a045
  22. T. Akahira and T. Sunose, Joint convention of four electrical institutes, Res. Report Chiba Inst. Technol. (Sci. Technol.), 16, 22-31 (1971).
  23. E. H. Song, D. G. Kim, C. J. Jeong, and D. Y. Kim, A kinetic study on combustible coastal debris pyrolysis via thermogravimetric analysis, Energies, 12, 836-845 (2019). https://doi.org/10.3390/en12050836
  24. S. Zhou, L. Han, G. Huang, Z. Yang, and J. Peng, Pyrolysis characteristics and gaseous product release properties of different livestock and poultry manures: Comparative study regarding influence of inherent alkali metals, J. Anal. Appl. Pyrolysis, 134, 343-350 (2018). https://doi.org/10.1016/j.jaap.2018.06.024
  25. Y. Zhou, Z. Chen, H. Gong, X. Wang, and H. Yu, A strategy of using recycled char as a co-catalyst in cyclic in-situ catalytic cattle manure pyrolysis for increasing gas production, Waste Manage., 107, 74-81 (2020). https://doi.org/10.1016/j.wasman.2020.04.002
  26. Z. Yildiz, N. Kaya, Y. Topcu, and H. Uzun, Pyrolysis and optimization of chicken manure wastes in fluidized bedreactor: $CO_2$ capture in activated bio-chars, Process Saf. Environ., 130, 297-305 (2019). https://doi.org/10.1016/j.psep.2019.08.011
  27. C. T. Chong, G. R. Mong, J. H. Ng, W. F. Chong, F. N. Ani, S. S. Lame, and H. C. Ong, Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis, Convers. Manag., 180, 1260-1267 (2019). https://doi.org/10.1016/j.enconman.2018.11.071
  28. D. Vamvuka, E. Kakaras, E. Kastanaki, and P. Grammelis, Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite, Fuel, 82(15-17), 1949-1960 (2003). https://doi.org/10.1016/S0016-2361(03)00153-4
  29. M. Hu, Z. Chen, S. Wang, D. Guo, C. Ma, Y. Zhou, J. Chen, M. Laghari, S. Fazal, B. Xiao, B. Zhang, and S. Ma, Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, fraser-suzuki deconvolution, and iso-conversional method, Convers. Manag., 118, 1-11 (2016). https://doi.org/10.1016/j.enconman.2016.03.058
  30. X. Yuan, T. He, H. Cao, and Q. Yuan, Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods, Renew. Energy, 107, 489-496 (2017). https://doi.org/10.1016/j.renene.2017.02.026
  31. H. Yang, R. Yan, T. Chin, D. T. Liang, H. Chen, and C. Zheng, Thermogravimetric analysisfourier transform infrared analysis of palm oil waste pyrolysis, Energ. Fuels, 18, 1814-1821 (2004). https://doi.org/10.1021/ef030193m
  32. Y. Xu and B. Chen, Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis, Bioresour. Technol., 146, 485-493 (2013). https://doi.org/10.1016/j.biortech.2013.07.086
  33. C. Di Blasi, Modeling chemical and physical processes of wood and biomass pyrolysis, Prog. Energ. Combust. Sci., 34(1), 47-90 (2008). https://doi.org/10.1016/j.pecs.2006.12.001
  34. Z. Chen, M. Hu, X. Zhu, D. Guo, S. Liu, Z. Hu, B. Xiao, J. Wang, and M. Laghari, Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis, Bioresour. Technol., 192, 441-450 (2015). https://doi.org/10.1016/j.biortech.2015.05.062
  35. H. Cao, Y. Xin, D. Wang, and Q. Yuan, Pyrolysis characteristics of cattle manures using a discrete distributed activation energy model, Bioresour. Technol., 172, 219-225 (2014). https://doi.org/10.1016/j.biortech.2014.09.049
  36. L. Wang, A. Shahbazi, and M. A. Hanna, Characterization of corn stover, distiller grains and cattle manure for thermochemical conversion, Biomass Bioenergy, 35(1), 171-178 (2011). https://doi.org/10.1016/j.biombioe.2010.08.018
  37. H. Wu, M. A. Hanna, and D. D. Jones, Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks, Waste Manag. Res., 30(10), 1066-1071 (2012) https://doi.org/10.1177/0734242X12452906
  38. Y. Xin, H. Cao, Q. Yuan, D. Wang, and Y. Liu, Kinetic analysis of cattle manure pyrolysis process with a novel two-step method: Pseudo-component model coupled with multipeak gaussian fitting, Environ. Prog. Sustain. Energy, 37(5), 1618-1625 (2018). https://doi.org/10.1002/ep.12843
  39. M. Hu, Z. Chen, D. Guo, C. Liu, B. Xiao, Z. Hu, and S. Liu, Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria, Bioresour. Technol., 177, 41-50 (2015). https://doi.org/10.1016/j.biortech.2014.11.061
  40. Z. Chen, Q. Zhu, X. Wang, B. Xiao, and S. Liu, Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis, Energy Convers. Manag., 105, 251-259 (2015). https://doi.org/10.1016/j.enconman.2015.07.077
  41. M. Fernandez-Lopez, G. J. Pedrosa-Castro, J. L. Valverde, and L. Sanchez-Silva, Kinetic analysis of manure pyrolysis and combustion processes, Waste Manage., 25, 230-240 (2016).
  42. M. Sharara and S. Sadaka, Thermogravimetric analysis of swine manure solids obtained from farrowing, and growing-finishing farms, J. Sustain. Bioenergy Syst., 4(1), 75-86 (2014). https://doi.org/10.4236/jsbs.2014.41008
  43. P. Simon, Isoconversional methods: Fundamentals, meaning and application, J. Therm. Anal. Calorim., 76, 123-132 (2004). https://doi.org/10.1023/B:JTAN.0000027811.80036.6c
  44. M. A. Islam, M. Asif, and B. H. Hameed, Pyrolysis kinetics of raw and hydrothermally carbonized karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis, Bioresour. Technol., 179, 227-233 (2015). https://doi.org/10.1016/j.biortech.2014.11.115