DOI QR코드

DOI QR Code

Design of a Simply Structured High-efficiency Polarization-independent Multilayer Dielectric Grating for Spectral Beam Combining

SBC 시스템 구성을 위한 단순한 구조를 가지는 고효율 무편광 유전체 다층박막 회절격자 설계

  • 조현주 (대덕대학교 총포광학과) ;
  • 김관하 (대덕대학교 반도체자동화과) ;
  • 김동환 ((주)한화 종합연구소 레이저개발2팀) ;
  • 이용수 ((주)한화 종합연구소 레이저개발2팀) ;
  • 김상인 ((주)한화 종합연구소 레이저개발2팀) ;
  • 조준용 ((주)한화 종합연구소 레이저개발2팀) ;
  • 김현태 ((주)한화 종합연구소 레이저개발2팀) ;
  • 곽영섭 (와이에스광학)
  • Received : 2020.06.08
  • Accepted : 2020.06.28
  • Published : 2020.08.25

Abstract

We design a polarization-independent dielectric multilayer thin-film diffraction grating for a spectral-beam-combining (SBC) system with a simple grating structure and low aspect ratio. To maintain the high quality of the SBC beam, we propose a multilayer mirror structure in which the wavefront distortion due to stress accumulation is minimized. Moreover, to prevent light absorption from contamination, an optimized design to minimize the grating thickness was performed. The optimally designed diffraction grating has 99.36% diffraction efficiency for -1st-order polarization-independent light, for incidence at the Littrow angle and 1055-nm wavelength. It is confirmed that the designed diffraction grating has sufficient process margin to secure a polarization-independent diffraction efficiency of 96% or greater.

격자의 구조가 간단하고 격자의 대조비가 낮은 SBC 시스템 구성을 위한 무편광 유전체 다층박막 회절격자를 설계하였다. SBC 방법으로 결합한 빔의 빔 품질을 높게 유지하기 위하여 회절격자의 파면 왜곡이 최소화되는 구조를 제안하였으며, 오염에 의한 흡수가 발생하지 않고 회절격자를 제작할 수 있는 구조로 회절격자를 최적화 설계하였다. 설계된 회절격자는 1055 nm 중심파장에서 Littrow 각도로 입사하는 경우 무편광 -1차 회절 효율이 99.36%이었으며, 96% 이상의 무편광 회절 효율을 나타내는 공정 여분이 확보되어 있음을 확인하였다.

Keywords

References

  1. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005). https://doi.org/10.1109/JSTQE.2005.850241
  2. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Bruckner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tunnermann, M. Gowin, E. tan Have, K. Ludewigt, and M. Jung, "2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers," Opt. Express 17, 1178-1183 (2009). https://doi.org/10.1364/OE.17.001178
  3. T. H. Loftus, A. M. Thomas, P. R. Hofman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beam-combined fiber lasers for high-average-power applications," IEEE J. Quantum Electron. 13, 487-497 (2007). https://doi.org/10.1109/JSTQE.2007.896568
  4. M. Jeon, Y. Jung, J. Park, H. Jeong, J. W. Kim, and H. Seo, "High-power quasi-continuous wave operation of incoherently combined Yb-doped fiber lasers," Curr. Opt. Photon. 1, 525-528 (2017). https://doi.org/10.3807/COPP.2017.1.5.525
  5. M. Strecker, M. Plotner, F. Stutzki, T. Walbaum, S. Ehrhardt, T. Benkenstein, U. Zeitner, T. Schreiber, R. Eberhardt, A. Tunnermann, U. Stuhr, M. Jung, and K. Ludewigt, "Highly efficient dual-grating 3-channel spectral beam combining of narrow-linewidth monolithic cw Yb-doped fiber amplifiers up to 5.5 kW," Proc. SPIE 10897, 108970E (2019).
  6. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhao, "10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation," Opt. Express 24, 12063-12071 (2016). https://doi.org/10.1364/OE.24.012063
  7. L. Li, Q. Liu, J. Chena, L. Wang, Y. Jin, Y. Yang, and J. Shao, "Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system," Opt. Commun. 385, 97-103 (2017). https://doi.org/10.1016/j.optcom.2016.10.048
  8. J. Chen, Y. Zhang, Y. Wang, F. Kong, H. Huang, Y. Wang, Y. Jin, P. Chen, J. Xu, and J. Shao, "Polarization-independent broadband beam combining gratings with over 98% measured diffraction efficiency from 1023 to 1080 nm," Opt. Lett. 42, 4016-4019 (2017). https://doi.org/10.1364/OL.42.004016
  9. J. Chen, Y. Jin, and J. Shao, "Design of broadband polarization-independent multilayer dielectric grating," Proc. SPIE 10339, 1033911 (2017).
  10. H. Cao, J. Wu, J. Yu, and J. Ma, "High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating," Appl. Opt. 57, 900-904 (2018). https://doi.org/10.1364/AO.57.000900
  11. X. Cheng, Z. Shen, H. Jiao, J. Zhang, B. Ma, T. Ding, J. Lu, X. Wang, and Z. Wang, "Laser damage study of nodules in electron-beam-evaporated $HfO_2/SiO_2$ high reflectors," Appl. Opt. 50, C357-C363 (2011). https://doi.org/10.1364/AO.50.00C357
  12. L. Gallais, B. Mangote, M. Zerrad, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, "Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range," Appl. Opt. 50, C178-C187 (2011). https://doi.org/10.1364/AO.50.00C178
  13. J.-Y. Natoil, L. Gallais, H. Akhiuayri, and C. Amra, "Laser-induced damage of materials in bulk, thin-film, and liquid forms," Appl. Opt. 41, 3156-3166 (2002). https://doi.org/10.1364/AO.41.003156
  14. M. Sugiura, K. Tamura, and M. Kobiyama, "Quantitative calculation of substrate bending caused by multilayer coating stresses," Appl. Opt. 59, A92-A98 (2020). https://doi.org/10.1364/AO.59.000092
  15. H.-J. Cho, Practical Optical Thin Films (Books-Hill, Seoul, Korea. 2015), pp. 278-280.
  16. J. E. Harvey and C. L. Vernold, "Description of diffraction grating behavior in direct cosine space," Appl. Opt. 37, 8158-8159 (1998). https://doi.org/10.1364/AO.37.008158
  17. J. E. Harvey and R. N. Pfisterer, "Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings," Opt. Eng. 58, 087105 (2019).
  18. N. Bonod and J. Neauport, "Diffraction gratings: from principles to applications in high intensity lasers," Adv. Opt. Photonics 8, 156-199 (2016). https://doi.org/10.1364/AOP.8.000156
  19. H.-J. Cho, K.-H. Lee, S.-I. Kim, J.-H. Lee, H.-T. Kim, W.-S. Kim, D. H. Kim, Y.-S. Lee, S. Kim, T. Y. Kim, and C. K. Hwangbo, "Analysis on design and fabrication of high-diffraction-efficiency multilayer dielectric gratings," Curr. Opt. Photon. 2, 125-133 (2018). https://doi.org/10.3807/COPP.2018.2.2.125
  20. K. Johnson, Diffraction optics simulation and design from KJ Innovation (KJ Innovation) www.kjinnovation.com (Accessed date: 2020. 05. 22).