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I. INTRODUCTION

Recently, self-accelerating Airy beams have received a 

great deal of attention since they were first theoretically 

and experimentally demonstrated in 2007 [1, 2]. This 

concept and the finite-energy solution to the paraxial wave 

equation were transferred from the solution of the free- 

particle Schrödinger equation within the context of quantum 

mechanics [3]. Because the perfectly diffractionless Airy 

beams have infinite energy, they cannot be realized in 

experiment. To make them realizable in optics, an expo-

nentially decaying factor was introduced to the ideal Airy 

beam. These truncated Airy beams can retain their unique 

properties of nondiffraction, self-acceleration, and self-healing 

over long distances. Now spatially truncated Airy beams 

have found applications in creating self-bending plasma 

channels [4], particle micromanipulation [5], and ultrafast 

self-accelerating pulse generation [6], etc. Self-accelerating 

Airy beams have also been widely investigated in nonlinear 

media, such as the nonlinear generation of Airy beams [7], 

spatial Airy solitons [8, 9], as well as spatiotemporal Airy 

light bullets [10]. Later, the evolutions of Airy-Gaussian 

beams with different intensity and phase profiles were also 

investigated in the nonlinear Kerr medium [11-13]. In the 

nonlinear regime, some interesting phenomena have been 

found in the interactions of truncated Airy beams. The 

interactions of two Airy beams and nonlinear accelerating 

beams in Kerr and saturable nonlinear media made it 

possible to form bound and unbound soliton pairs, as well 

as single solitons [14, 15]. In 2015 and 2016, Shen and 

his coworkers revealed a controllable manipulation of 

anomalous interactions between Airy beams in nonlocal 

nonlinear media, and nematic liquid crystals, [16, 17] 

respectively. The interaction of two Airy-Gaussian beams 

can lead to the formation of single breathers and breather 

pairs [18]. Recently, the mutual interaction of Airy beams 

were also investigated in photorefractive media [19] and 

in the fractional nonlinear Schrödinger equation [20]. In 

nonlocal nonlinear media, the interactions between a 

truncated Airy beam and a soliton beam can not only 
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produce new optical beams but also generate and control 

breather solitons [21].

On the other hand, phase distribution has an important 

effect on the beam propagation and optical manipulation. 

For example, phase engineering of an axicon’s phase 

transmission function can result in an exponential growth 

of an on-axis intensity of a diffraction-free or Bessel beam 

[22]. Careful design of the initial phase can be used to 

create self-bending wave packets propagating along arbitrary 

prescribed convex trajectories [23]. In optical Kerr non-

linearity, an initial sinusoidal phase can be used to steer 

the propagation direction of a Gaussian beam [24]. The 

basic idea is to introduce a sinusoidal phase on the wave- 

front before the beam enters the nonlinear Kerr medium. 

This method was used to control the optical propagation of 

Gaussian beams or solitons in a photovoltaic crystal and 

optical lattices [25, 26]. Recently, the propagation of a 

finite-energy Airy beam with spatial phase modulation was 

investigated in an optical Kerr medium. It was found that 

optical deflection, optical splitting, and periodical oscillation 

can be realized by choosing proper modulation parameters 

[27]. In a photonic lattice, the presence of periodically 

varying refractive index in the transverse spatial dimension 

can also affect the propagation and localization of optical 

beams in nonlinear media. Then questions naturally arise: 

What will propagation dynamics be when a truncated Airy 

beam with SPM propagates in Kerr nonlinearity with a 

lattice potential? Can the spatial phase modulation steer 

the propagation effectively in an optical lattice? In this 

paper, we investigate the propagation of a finite-energy 

Airy beam in Kerr nonlinearity with a periodical lattice. 

The influences of optical field amplitude, modulation 

amplitude, spatial frequency and phase shift on the optical 

steering are discussed in detail.

II. THEORY

To illustrate the propagation dynamics, we consider a 

one-dimensional truncated Airy beam propagating in Kerr 

nonlinearity with a periodical lattice potential. In the 

paraxial approximation, the optical propagation can be 

described by the following equation:
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where u is the normalized optical field envelope, z and x 

are the normalized coordinates of the longitudinal direction 

and the transverse direction, respectively. )/(cos)( 2
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describes the transverse profile of the optical lattice potential, 

V0 describes the modulation depth, and T is the period of 

the lattice.

The optical field of a transverse self-accelerating Airy 

beam with finite energy can written as

)exp()()0,( axxAixu  , (2)

where a is a positive decay factor. The introduction of this 

decay factor ensures the physical realization condition of 

finite energy. To investigate the propagation dynamics of 

the truncated Airy beam with phase modulation in optical 

lattice, a programmable spatial phase-only modulator is 

inserted before the nonlinear Kerr medium with optical 

lattice on the optical path. The sinusoidal phase can be 

generated by computer generated holograms [28]. When the 

truncated Airy beam passes through a thin sinusoidal phase 

grating located in the (x, y) plane with grating lines parallel 

to the y-axis, the optical field can be expressed as

    pxiaxxAirxu 2sinexp)exp()()0,(
0 , (3)

where r is the amplitude of optical filed. ϕ0, p, and δ 

represent the modulation amplitude, modulation frequency, 

and phase shift of the sinusoidal phase, respectively. By 

using the standard Bessel-function to expand the modulation 

term, Eq. (3) can be rewritten as
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According to Eq. (4), the input beam is divided into 

several subbeams which propagate at different angles by 

the sinusoidal phase modulation. The initial amplitude of 

the mth subbeam is determined by Jm(ϕ0). High modulation 

depth will lead to some energy creeping back into the 

central subbeam, while low modulation depth will shed 

some of the power from the central subbeam. In Ref. [25], 

modulation depth ϕ0 is chosen as ϕ0 = 2.405, the first 

zero-point of the zero-order Bessel function. Due to the 

self-accelerating property of Airy beam and the presence 

of the optical lattice, the steering of a truncated Airy beam 

will be difficult. To steer the propagation of finite-energy 

Airy beam effectively, we hereafter choose ϕ0 = 5.502, the 

second zero-point of J0. In this case, phase modulation not 

only leaves nearly no power in the central portion of the 

beam but also makes the optical steering more effective. 

Besides, the modulation frequency p, which determines 

incident angle of each subbeam, also has great impact on 

the propagation dynamics. High values of the modulation 

frequency p lead to large angles of the subbeams. 

However, extra-large values of p will violate the paraxial 

approximation while the optimum effect of beam steering 

cannot be obtained for extra low values of p. The appro-

priate range of modulation frequency p is 0.1 ≤ p ≤ 0.3. This 

parameter range can ensure no violation of the paraxial 

approximation as well as effective control of the optical 

beam.
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III. RESULTS

By using split step Fourier method, Eq. (1) can be 

simulated for the propagation dynamics of the phase- 

modulated Airy beam in an optical lattice. Under the 

combined effects of Kerr nonlinearity, self-deflection effect 

of the Airy beam, spatial phase modulation, and the 

localization of the optical lattice, the optical propagation of 

a truncated Airy beam can be effectively controlled by 

choosing different values of optical parameters.

3.1. Optical Beam Deflection

In this section, we discuss how to steer the deflection 

of the finite-energy Airy beam in an optical lattice by 

changing the values of δ. For the facility of demonstration, 

we assume that the lattice parameter is set as T = 1, and 

V0 = 2, and the decay factor a = 0.2. Figure 1 shows the 

evolutions of finite-energy Airy beams with sinusoidal phase 

when p = 0.1. As demonstrated in Ref. [24], the sinusoidal 

phase modulation brings a force which can make the beam 

deflect during the propagation. For a truncated Airy beam, 

the main lobe owns a majority part of the energy, while 

only a little energy is left in the side lobes. Under the effect 

of the optical lattice, the phase-modulated Airy beams with 

different parameters present different propagation dynamics. 

In the top row, the phase shift δ = 0. One can see that the 

spatial phase modulation makes the truncated Airy beam 

deflect to the positive direction of the x axis. In Fig. 1(a), 

r = 1. In this case, most energy remains in the main lobe 

of the truncated Airy beam, and the main lobe is deflected 

to the positive direction of the x axis. After short distance 

propagation, some energy departs from the main lobe and 

propagates in the optical lattice. Besides, the energy in the 

side lobes is caught by the waveguide effect and thus the 

side lobes propagate along the optical lattice soon after 

they come into the optical lattice. As the optical amplitude 

r increases, the deflection effect caused by the spatial 

phase modulation is getting stronger, and relatively low 

energy is caught by the optical lattice. As shown in Fig. 

1(b), most energy in the main lobe keeps the deflection in 

the deflection direction when r = 2. If we increase the 

optical amplitude r further, e.g., r = 5 and 8, the spatial 

phase modulation and the self-deflection property of the 

Airy beam dominate the propagation dynamics, as shown 

in Figs. 1(c) and 1(d). When r = 5, as shown in Fig. 1(c), 

the beam width of the main lobe first becomes narrow and 

the optical field amplitude increases dramatically. Due to 

the strong self-focusing and the waveguide effect of the 

optical lattice, a part of relatively high energy is departed 

from the main lobe and a soliton-like beam comes into 

birth. Both these beams propagate as soliton-like breathers. 

When r = 8 [Fig. 1(d)], the main lobe is divided to two 

soliton-like beams soon after it enters the optical lattice. In 

this case, the first side lobe also oscillates and propagates 

as a snake shape under the confinement effect of the 

optical lattice. When δ = π/2, a phase-modulated Gaussian 

beam propagates along the z axis in a Kerr nonlinear 

medium with an optical lattice [26]. Different from the 

counterpart of a Gaussian beam, the finite-energy Airy 

beam still deflects under the spatial phase modulation 

during the propagation because of the self-accelerating 

property of the Airy beam. Figures 1(e)-1(h) give the 

propagation dynamics when δ = π/2. When r has a low 

value (e.g., r = 1, 2), the self-accelerating is relatively low, 

and most of the energy is caught by the optical lattice. 

Therefore, N-soliton-like propagation forms [Figs. 1(e) and 

1(f)]. If we increase the value of r, the self-accelerating 

force increases. When r = 5, as shown in Fig. 1(g), a part 

of energy deflects at first. After a long-distance soliton-like 

deflection, the beam reflects under the effect of the optical 

lattice and the nonlinearity. If we increase r further to be 

8, as shown in Fig. 1(h), the self-accelerating momentum 

of the truncated Airy beam is large enough so that, a part 

of the energy can be free of the confinement of the central 

lattice and the new birth beam can keep the propagation at 

a small angle. Most energy propagates as an s-shape in the 

central lattice.

In the case δ = π, the optical beam is deflected to the 

negative direction of the x axis [Figs. 1(i)-1(l)]. As shown 

in Figs. 1(i)-1(j), when the intensity is relatively low, 

interactions are observed between the main lobe and the 

side lobes. Some energy is transferred to the side lobes. 

Each side lobe propagates separately in a waveguide of the 

lattice but vanishes in the background quickly under the 

effect of diffraction. When r = 5, the self-deflection produced 

by spatial phase modulation is strong enough to overcome 

the self-accelerating and the lattice confinement. As a result, 

FIG. 1. Deflection of a spatial-phase-modulated Airy beam in 

an optical lattice when p = 0.1, a = 0.2, and V0 = 2. The value 

of phase shift δ is 0 (top row), π/2 (middle row), and π (bottom 

row), respectively.
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a soliton-like beam comes into birth and it self-deflects to 

the negative direction of the x axis [Fig. 1(k)]. When r is 

increased further to be 8, as shown in Fig. 1(l), two beams 

are shed from the main lobe. Both of them can propagate 

as a soliton-like beam at a certain angle. Besides, the first 

side lobe also has enough large energy and it swings 

periodically in the lattice.

3.2. Effect of Modulation Frequency p on the Steering

To study the propagation dynamics at different spatial 

modulation frequency p, Fig. 2 is drawn to show the effect 

of p on the propagations of finite-energy Airy beams at 

r = 2, 5, and 8 when a = 0.2 and δ = 0. As we demonstrate 

in Sec. 3.1, the finite-energy Airy beam can be effectively 

controlled by the spatial phase modulation in Kerr non-

linearity with optical lattice [see that in Figs. 1(a)-1(d)]. 

When we change p = 0.2, each subbeam has a larger 

incident angle compared with the case of p = 0.1. Therefore, 

a larger deflection angle can be reached when p = 0.2, as 

shown in Figs. 2(a)-2(c). From Fig. 2(a), one can see that 

the main lobe deflects to the positive direction of the x 

axis though it diffracts during the propagation when r = 2. 

In the meantime, a small part of the energy remains in the 

side lobes. They are caught in the waveguides and vanish 

in the background quickly. When r = 5, most energy can 

propagate as a soliton and it deflects with a large angle 

[Fig. 2(b)]. If we increase the value of r to be 8, a new 

soliton-like beam comes into birth from the main lobe. 

Both of these two beams can propagate as a soliton but 

the deflection angle is different [Fig. 2(c)]. That is to say, 

the spatial phase modulation can be used to steer the 

propagation direction to some extent when p = 0.2. If we 

further increase the value of p to 0.3, it is difficult to 

control the beam by sinusoidal phase modulation. As 

shown in Figs. 2(d)-2(f), the propagation becomes more 

complex as the modulation frequency p increases because 

the amount of the exciting subbeams increases at the same 

time. Therefore, we can conclude that it is difficult to 

control the propagation of the truncated Airy beam at a 

too high value of p, while the benefits of the phase 

modulation can be maximized at a too low value of p. For 

effective control of the beam propagation direction, the 

optimal value of p is about 0.1.

3.3. Effect of Truncated Coefficient a on the Steering

To understand the optical steering in optical lattice better, 

we investigate the propagation dynamics of a finite-energy 

Airy beam with different values of truncation coefficient a. 

When p = 0.1, δ = 0, r = 3, we can plot Fig. 3 to show the 

propagation dynamics. When a has a relatively low value, 

e.g., a = 0.1 in Fig. 3(a) and a = 0.2 in Fig. 3(b), most 

energy remains in the main lobe and the beam width 

increases during the deflection. At the same time, the side 

lobes have considerable energy. They are trapped in the 

waveguides of the lattice potential quickly once they enter 

the optical lattice. The evolutions of the side lobes are 

always accompanied by strong diffraction because the 

intensity of each side lobe is not strong enough to form a 

soliton in the lattice.

Compared to that in the main lobe, the energy remaining 

in the side lobes becomes relatively low as the truncation 

coefficient increases. For example, most energy can be 

steered when a = 0.3, as shown in Fig. 3(c). When the 

coefficient is high enough, e.g., a = 0.6, the side lobes 

disappear gradually and the steering is similar to that of 

Gaussian beams, as shown in Fig. 3(d). Therefore, we can 

conclude from Fig. 3 that as the truncated coefficient 

increases, the steering of finite-energy Airy beam becomes 

easier and more effective.

FIG. 3. Propagation of a phase-modulated finite-energy Airy 

beam when a = 0.1 (a), 0.2 (b), 0.3 (c), and 0.6 (d). Other 

parameters are r = 3, p = 0.1, δ = 0.

FIG. 2. The effect of p on the optical steering when a = 0.2, 

and V0 = 2, and δ = 0. The value of p is 0.2 (top row) and 0.3 

(bottom row), respectively.
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3.4. Effect of the Optical Lattice on the Steering

In this section, we discuss the effect of the lattice 

parameter on the optical steering. First, we discuss the 

effect of the modulation depth V0 on the optical steering. 

Figure 4 shows the propagation dynamics of a finite-energy 

Airy beam with sinusoidal phase at different V0 when r = 

5, p = 0.1, δ = 0 and T = 1. When V0 = 1, the modulation 

depth is relatively low, the deflection induced by spatial 

phase modulation dominates the propagation and it can 

overcome the confinement effect of the optical lattice 

potential. Therefore, most energy deflects with a large 

deflection angle. The beam energy remaining in the side 

lobe is almost negligible, as shown in Fig. 4(a). If we 

increase the value of V0 to be 2, a little energy begins to 

depart from the main lobe and propagate in the 

waveguides induced by the optical lattice, as shown in Fig. 

4(b). If V0 achieves a large value, the confinement effect 

of the lattice plays an important role in the propagation. 

When V0 = 5, a considerable amount of energy is confined 

to the central waveguide, although most of the energy still 

keeps deflection, as shown in Fig. 4(c). When V0 gets an 

extra-large value, e.g., V0 = 10, the optical lattice forms a 

series of deep potential wells which forms a competition 

relation with the phase modulation. As shown in Fig. 4(d), 

a large amount of energy is caught in the central waveguide 

and the adjacent waveguide. Only a small part of energy 

can be steered to the positive direction of the x axis by 

spatial phase modulation. Therefore, we can conclude that 

the optical lattice is a barrier to the deflection. If the lattice 

depth is extra high, the restraint of the potential wells is 

hard to conquer and the steering becomes difficult.

Next, we discuss the effect of the lattice period on the 

steering. Figure 5 shows the optical steering by spatial 

phase modulation in optical lattice with several values of 

period T when r = 5, p = 0.1, δ = 0 and V0 = 2. For low 

values of period T, the deflected beam will encounter lots 

of potential barriers. From Fig. 5(a), which shows the 

propagation at T = 0.5, some energy is caught by the 

potential and propagates in the lattice because of the 

confinement effect of the lattice. As the lattice period 

increases, the waveguide width increases and thus the 

potential barrier becomes flat when the modulation depth 

V0 is the same. In Fig. 5(b), T = 2, most energy can be 

deflected to the same direction though the deflected beam 

propagates as a breather. When T = 10, less energy is lost 

in the side lobes and the main beam encounters less 

resistance during the deflection [Fig. 5(c)].

IV. CONCLUSION

In conclusion, we have numerically investigated the 

propagation dynamics of a truncated Airy beam with 

sinusoidal phase in nonlinear Kerr media with optical 

lattice. The effects of optical field amplitude, modulation 

amplitude, spatial frequency and phase shift on the optical 

steering are discussed in detail. For arbitrary values of 

optical field amplitude, the phase modulation can make 

the truncated finite-energy Airy beam deflect as a soliton. 

Spatial modulation frequency, which affects the amount 

of the exciting subbeams, has great influence on the 

evolution. Though larger deflection angle can be reached 

at larger value p, the optical steering will be difficult and 

the propagation dynamics becomes complex. When the 

modulation depth is 5.502, the optimal spatial frequency is 

0.1. In this case, the deflection angle can be effectively 

controlled by changing the phase shift δ. The truncation 

coefficient a determines the relative power of the side 

lobes to the main lobe in the truncated Airy beam. As the 

FIG. 4. Propagation dynamics of a finite-energy Airy beam 

with spatial phase modulation at several values of V0 when 

r = 3, p = 0.1, δ = 0 and T = 1: (a) V0 = 1, (b) V0 = 2, (c) V0 = 

5, and (d) V0 = 10.

FIG. 5. Propagation of a phase-modulated finite-energy Airy 

beam in optical lattice when T = 0.5 (a), 2 (b), and 10 (c). 

Other parameters are r = 5, p = 0.1, δ = 0 and V0 = 2.
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truncation coefficient a increases, the steering of finite- 

energy Airy beam becomes easier and more effective.

The effect of lattice depth on the steering has also been 

discussed in detail. The lattice can be seen as a barrier to 

restrain the deflection of the optical beam. In a lattice with 

high modulation depth, the restrain force becomes large. 

The steering of the Airy beam will become difficult in the 

case of extra high lattice depth. In addition, the control of 

optical beam becomes easier as the lattice period increases. 

The presented spatial phase modulation can provide an 

effective method to control the propagation of Airy 

beams, and the propagation properties may have important 

applications in optical switches, optical logic gates and 

optical waveguides.
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